Search Documents
Search Again
Search Again
Refine Search
Refine Search
-
Reservoir Engineering-General - A Study of the Vaporization of Crude Oil by Carbon Dioxide RepressuringBy R. F. Nielsen, D. E. Menzie
The object of this study was to determine if crude oil could be produced successfully by a process of crude oil vaporization using carbon dioxide repressuring. This process appears to have application to highly fractured formations where the major oil content of the reservoir is contained in the non-fractured porosity with little associated permeability. Crude oil was introduced into the windowed cell and carbon dioxide was charged to the cell at the desired pressure. A vapor space was formed above the oil, and the crude oil-carbon dioxide mixture was allowed to come to equilibrium. The vapor phase was removed and the vaporized oil collected as condensate. Samples of all produced and unproduced fluids were analyzed. Tests were also performed to evaluate the amount of vaporized oil that can he produced by rocking from a high to a lower pressure. The carbon dioxide repressuring process was applied to a sand-filled cell to investigate the performance in a porous medium. A test was performed to evaluate how the condensate recovery changes as the size of the gas cap in contact with the oil changes. INTRODUCTION This study has been directed toward a relatively new process of vaporization of crude oil designed to increase ultimate production of hydrocarbons through the application of carbon dioxide to an oil reservoir. Suggested advantages of carbon dioxide repressuring of a petroleum reservoir are: (1) reduction in viscosity of liquid hydrocarbons due to the solubility of carbon dioxide in crude oil, (2) swelling of the reservoir oil into a larger liquid-oil volume with a resulting increase in production and decrease in residual oil saturation due to an increase in the relative permeability to oil, (3) displacement of more stock-tank oil from the reservoir since the residual liquid is a swelled crude oil, and (4) gasification of some of the hydrocarbons into a carbon dioxide-hydrocarbon vapor mixture. Balanced against these advantages are several detrimental factors which must be evaluated; i.e., high compression costs and corrosion of well equipment and flow lines. Some of the more outstanding contributions to the study of carbon dioxide injection have been reviewed in order to furnish a basis for a continuation of research pertaining to this method. The literature reviewed1-8 has been limited to that dealing with carbon dioxide repressuring processes or with carbon dioxide-crude oil-natural gas phase behavior. Articles relating to carbonated water injection and literature published on the use of low pressure carbon dioxide gas injection in water flooding have not been included in this study. In 1941 Pirson5 suggested the high pressure injection of carbon dioxide into a partially depleted reservoir for the purpose of causing the reservoir oil to vaporize and thus produce the oil as a vapor along with the carbon dioxide gas. By reducing the pressure on this produced mixture of hydrocarbons and carbon dioxide at the surface, it was proposed to separate the hydrocarbons from the carrier gas. He theorized that essentially all the oil in a reservoir could be produced by simply injecting enough carbon dioxide to vaporize the residual oil. This present investigation deals with the vaporization of a crude oil by carbon dioxide, the molecular weight and gravity of the vaporized oil product and the characteristics of the residual oil after several repressuring cycles with carbon dioxide. An attempt is made to evaluate the merits of a vaporization process for the crude oil rather than a flow process where the oil recovery is determined by relative permeability considerations. Such a vaporization of crude oil by carbon dioxide repressuring appears to have possible use in a highly fractured formation where the major oil content of the reservoir is contained in the non-fractured porosity with little permeability. The carbon dioxide flows into the fractures, contacts the crude oil in the matrix and vaporizes part of the crude oil; this vaporized oil is produced and recovered and the carbon dioxide is reinjected again. The specific problem of this study is to attempt to answer this question; Can crude oil be produced successfully (technically, but without economic considerations) from a petroleum reservoir by a process of vaporization of the crude oil by carbon dioxide repressuring? DEFINITION OF TERMS AS APPLIED IN THIS STUDY Carbon Dioxide Contact: One cycle in which carbon dioxide was injected and bled off. Condensate: The hydrocarbon liquid which was condensed out of the mixture of hydrocarbon-carbon dioxide vapor upon reduction of the pressure of the vapor. Hydrocarbons Produced (HCP): All the hydrocarbon!, which were vaporized by the carbon dioxide repressuring process and were removed from the cell during any specific cycle or carbon dioxide contact. Hydrocarbons Unproduced (HCU): All the hydrocarbons which were not vaporized by the carbon dioxide
-
Part XI – November 1969 - Papers - High-Temperature Creep of Some Dilute Copper Silicon AlloysBy C. R. Barrett, N. N. Singh Deo
The high-temperature steady-state creep behavior of a series of dilute copper-silicon alloys was studied to determine the effect of stacking fault energy on the creep-rate. The steady-state creep rate is, when taken at equivalent diffusivities decreases with decreasing stacking fault energy. The stress and temperature dependencies of is suggest that creep is a difusion controlled dislocation climb process. Electron microscopy studies of the creep substructure revealed: 1) the subgrain size is not a function of the stacking fault energy in these alloys, 2) the dislocation density not attributed to the subgrain walls seems to be higher during primary creep and decreases to a lower steady value during steady-state creep, and 3) the dislocation density during steady-state creep decreases with decreasing stacking fault energy. In the past few years numerous investigators have studied the influence of stacking fault energy on high-temperature creep strength. Most of these investigators have confined their attentions to studying the relationship between steady-state creep rate, is, and stacking fault energy, ?, when samples are tested under conditions of comparable stress and temperature. For the case of fcc metals, it was initially shown by Barrett and Sherbyl and since confirmed by many others2"4 that is decreases with decreasing ?, often following an empirical relation of the form i ?m where m is a constant about equal to 3. The application of theory to explain this observation has not been entirely successful. One of the main difficulties has been the almost complete lack of structural information (dislocation density, subgrain size, and so forth) for samples with different stacking fault energies, tested under high-temperature creep conditions. weertman5 has attempted to explain the stacking fault energy dependence of is on the basis of a dislocation climb mechanism. Assuming that both the rate of dislocation core diffusion and the ease of athermal jog formation decreases as ? decreases Weertman has argued that the rate of dislocation climb and hence the creep rate should also decrease as ? decreases. One questionable aspect of Weertman's analysis is the assumption that core diffusion down extended dislocations is slower than core diffusion down unextended dislocations. The only experimental work done in this area, by Birnbaum et al.6 on nickel and Ni-60 Co, has shown the core diffusivity to increase with decreasing ?. Theories of steady-state creep based on the diffusive motion of jogged screw dislocations often seem unable to predict even the qualitative nature of the es- relationship. Assuming that Weertman is correct in his assumption that the dislocation jog density decreases with decreasing ? then the jogged screw theories predict an increasing dislocation velocity with lower ?. It is usually assumed that the increase in dislocation velocity implies a corresponding increase in creep rate. However, two other factors must be considered before such a statement can be made. That is, we must know how both the mobile dislocation density and the effective stress (the difference between applied stress and internal stress) vary with ?. Significant changes in either one of these factors could outweigh any change in dislocation velocity accompanying a change in ?. And with the slower rates of recovery expected in low stacking fault energy materials it seems likely to expect both mobile dislocation density and effective stress to be dependent on ?. Sherby and Burke7 have suggested that stacking fault energy influences the creep rate in an indirect way. These authors cite evidence that the steady-state subgrain size generated during high-temperature creep is a function of ? decreasing with decreasing ?. Assuming the creep rate to be proportional to the area swept out by each expanding dislocation loop and that subgrain boundaries are good barriers to dislocations, then the creep rate should be proportional to subgrain area, hence increasing as ? increases. A critical evaluation of any of the above theories requires more quantitative information concerning the dislocation substructure generated during high-temperature creep. Accordingly this investigation was undertaken with an aim of studying the influence of stacking fault energy on tbe steady-state creep characteristics of a series of dilute copper-silicon alloys. Special emphasis was placed on studying the strain dependence of both the dislocation configuration and density. MATERIALS AND PROCEDURE Dilute copper-silicon alloys of the compositions shown in Table I were tested in tension at constant stress. The relative stacking fault energy of these alloys has been determined and is shown in Table 11. An Andrade-Chalmers lever arm was used to maintain constant stress and testing was carried out in a water
Jan 1, 1970
-
Logging and Log Interpretation - Prediction of the Efficiency of a Perforator Down-Hole Bases on Acoustic Logging InformationBy A. A. Venghiattis
A rational approach to the selection of the appropriate perforator to use in each specific zone of an oil well is presented. The criteria presently in use for this choice bear little resemblance with actual down-hole condilions. These environmental conditions affect the elastic properties of rocks. One of these elastic properties, acoustic velocity, is suggested as the leading parameter to adopt for the choice of a perforator because, being currently measured in the natural location of the formation, it takes into account all of the effects of compaction, saturation, temperature, etc., which are overlooked in the laboratory. Equations and curves in relation with this suggestion are given to allow the prediction of the depth of perforation of bullets and shaped charges when an acoustic log has been run in the zone to be perforated. INTRODUCTION When an oil company has to decide on the perforator to choose for a completion job, I wonder if it is really understood that, to date, there is no rational way of selecting the right perforator on the basis of what it will do down-hole. This situation stems from the fact that the many varieties of existing perforators, bullets or shaped charges, are promoted on the basis of their performance in the laboratory, but very little is said on how this performance will be affected by subsurface conditions such as the combination of high overburden pressure and high temperature, for example. The purpose of this paper is to show the limitations of the existing ways of evaluating the performance of perforators, to show that performances obtained in laboratories cannot be extended to down-hole conditions because the elastic properties of rocks are affected by these conditions and, finally, to suggest and justify the use of the acoustic velocity of rocks, as the parameter to utilize for the anticipation of the performance of a perforator in true down-hole environment. EVALUATING THE PERFORMANCE OF A PERFORATOR It is natural, of course, to judge the performance of a perforator from the size of the hole it makes in a predetermined target. Considering that the ultimate target for an oilwell perforator is the oil-bearing formation preceded in most cases by a layer of cement and by the wall of a steel casing, the difficulties begin with the choice of an adequate experimental target material. For obvious reasons of convenience, the first choice that came to the mind of perforator designers was mild steel. This is a reasonable choice for the comparison of two perforators in first approximation. Mild steel is commercially available in a rather consistent state and quality, and is comparatively inexpensive. The trouble with mild steel is that it represents a yardstick very much contracted; minute variations in depth of penetration or hole diameter and shape may be significant though difficult to measure. The penetration of projectiles in steel being a function of the Brinell hardness of the steel (Gabeaud, O'Neill, Grun-wood, Poboril, et al), it is often difficult to decide whether to attribute a small difference in penetration to a variation on the target hardness or to an actual variation on the efficiency of the projectile. Another target material which has been widely used for testing the efficiency of bullets or shaped charges in an effort to represent a formation—a mineral target as opposed to an all-steel target—is cement cast in steel containers. This type of target, although offering a larger scale for measuring penetrations, proved so unreliable because of its poor repeatability that it had to be abandoned by most designers. The drawbacks of these target materials, and particularly their complete lack of similarity with an oil-bearing formation, became so evident that a more realistic target arrangement was sought until a tacit agreement was reached between customers and designers of oilwell perforators on a testing target of the type shown on Fig. 1. This became almost a necessity about seven years ago because of the introduction of a new parameter in the evaluation of the efficiency of a perforator, the well flow index (WFI). The WFI is the ratio (under predetermined and constant conditions of ambiance, pressure and temperature) of the permeability to a ceitain grade of kerosene of the target core (usually Berea sandstone) after verforation. to its vermeabilitv before perforation. The value of this index ;or the present state if the perforation technique varies from 0 to 2.5, the good perforators presently available rating somewhere around 2.0 and the poor ones around 0.8, There is no doubt that, to date, the WFI type of test is by far the most significant one for comparing perforators. It is obvious that a demonstration of a perforator
-
Institute of Metals Division - The Development of High Strength Alpha-Titanium Alloys Containing Aluminum and ZirconiumBy R. A. Wood, R. I. Jaffee, H. R. Ogden, D. N. Williams
The tensile properties, creep resistance. and thermal stability of highly alloyed Ti-Al-Zr alloys were examined. On the basis of these studies, the Ti-7Al-1ZZr composition was selected for more complete evaluation. The alloy was found to be weldable and free from excessive directionality. In addition, it developed maximum properties without requiring heat treatment other than an annealing operation in the alpha field. The alloy was recommended for scale up and is presently being investigated on a production-level basis. One of the more attractive properties of titanium alloys is their ability to withstand stress at moderately high temperatures, and a considerable amount of effort has been devoted to increasing the maximum service temperature of titanium alloys. This work has suggested that the optimum alloys for high-temperature service will be single-phase a (close-packed hexagonal) alloys containing significant amounts of aluminum. However, the maximum amount of aluminum which can be alloyed with titanium is between 6 and 8 pct,l since at high-aluminum contents an embrittlement reaction occurs in the anticipated service temperature range, 800" to 1100°F. It has been shown that the embrittlement reaction involves decomposition of the high-aluminum a phase to one or more new phases.' Since this reaction does not occur at intermediate or low-aluminum contents, it was felt that intermediate Ti-A1 alloys might be strengthened by a-soluble ternary additions without inducing the embrittlement reaction. The first alloying addition considered was tin, which shows extensive solubility in a titanium and has moderate strengthening tendencies. Unfortunately, it was soon apparent that tin also promoted the embrittlement reaction, and that to obtain a stable alloy, the aluminum content had to be reduced as the tin content was increased. The second alloying addition considered was zirconium, which is similar to tin in its effects on titanium. This element did not contribute to the embrittlement reaction and, in fact, appeared to increase the maximum amount of aluminum which could be alloyed with titanium without inducing instability. This paper describes an investigation of the Ti-A1-Zr a alloy region. Alloys containing from 4 to 12 pct A1 and from 6 to 15 pct Zr were examined. The properties of these alloys are described and the bases for selecting an optimum composition is outlined. This composition, Ti-7A1-12Zr, is presently being scaled up in tonnage quantities, and is being evaluated extensively throughout the industry. In addition to presenting the basis for its selection, this paper presents a description of the properties developed in laboratory material as determined during the alloy investigation. These properties suggest that this alloy can fill an important position in applications requiring light weight, fabrica-bility, weldability, and strength to 1000oF or higher. EXPERIMENTAL PROCEDURES Titanium alloy ingots were prepared by inert electrode arc melting under an argon atmosphere. Alloying elements used were 110 Bhn titanium sponge, high-purity aluminum, and reactor-grade zirconium. Pancake-shaped ingots were prepared weighing approximately 300 g. The composition of the ingots was checked by weight measurements before and after melting. The pancake ingots were forged at 2000°F to approximately half their original thickness to give a flat plate roughly 1/2 in. thick. This plate was then rolled at 1800' to 1600°F to 0.250 in. thick. All of the alloys examined fabricated well. However, alloys containing 15 pct Zr tended to overheat due to exothermic oxidation, and scaling was excessive. As might be anticipated from its effect in decreasing the ß transus, increased zirconium appeared to improve fabricability somewhat, especially during rolling at lower temperatures. Except for a limited study of heat-treatment response, all alloys were examined in the a-annealed condition. Prior to heat treatment the a and ß tran-sus temperatures were determined by metallo-graphic examination of samples quenched after annealing at 50-deg intervals in the transformation region. These data are shown in Fig. 1. Recrystal-lization appeared to occur in about 1 hr in the range 1300º to 1500ºF. Therefore, alloys were annealed for 1 hr at 1550ºF (4 and 5 pct Al), 1600ºF (6 through 7-1/2 pct Al), or 1650°F (8 or more pct Al). This produced an equiaxed a grain structure. In most alloys, a "ghost" structure was visible after the a-annealing treatment, as shown in Fig. 2. This structure apparently resulted from the acicular
Jan 1, 1963
-
Iron and Steel Division - Activity of Silica in CaO-Al2O3 Slags at 1600° and 1700°CBy F. C. Langenberg, J. Chipman
New data on the distribution of silicon between slag and carbon-saturated iron at 1600oand 1700oC are presented which, in combination with previously published data, permit the determination of silica activities over a broad range of compositions in the CaO-Al2O3-SiO2 system. The distribution of silicon between graphite-saturated Fe-Si-C alloys and blast furnace-type slags in equilibrium with CO has been described in previous publications.1"3 In this past work the silica-silicon relation was established at temperatures of 1425" to 1700°C for slags containing up to 20 pct Al2O3. This paper presents the results of additional studies at 1600" and 1700° C which extend the silicon distribution data at these temperatures for CaO-A1203-SiO2 slags over a range from zero pct A12O3 to saturation with A12O3, or CaO.2A12O3. The upper limit of SiO, is set by the occurrence of Sic as a stable phase when the metal contains 23.0 or 23.7 pct Si at 1600" or 1700°C, respectively. The activity of silica over the expanded range is determined directly from the distribution data.3 Recently, 4-7 other investigators have studied the activities of SiO, and CaO, principally in the binary system, using different methods and obtaining somewhat different results. EXPERIMENTAL STUDY The experimental apparatus and procedure have been fully described in previous publications.1, 3 Six new series of experimental heats have been made, four at 1600° and two at 1700°C. Master slags of several fixed CaO/A12O3 ratios were pre-melted in graphite crucibles, and these were used with additions of silica to prepare the initial slag for each experiment. Slag and metal were stirred at 100 rpm and CO was passed through the furnace at 150 cc per min. The initial sample was taken 1 hr after addition of slag at 1600°C or 1/2 hr after addition at 1700°C. The run was normally continued for 8 hr at 1600°C or 7 hr at 1700°C, and the final sample was taken at the end of this period. Changes in Si and SiO2 content indicate the direction of approach to equilibrium, and in a series of runs where the approach is from both sides this permits approximate location of the equilibrium line. Fig. 1 shows the results of such a series of 15 runs at 1600°C for slags of CaO/Al2O3 = 1.50 by weight. Figs. 2 and 3 record other series at 1600°C and Fig. 5 a series at 1700°C with fixed CaO/Al2O3 ratios. The results of the experiments at 162003°C have been reported in part in a preliminary note.3 In the experiments recorded in Figs. 4 and 6, the slags were saturated with A12O3 (or with CaO.2A12O3 within its field of stability) by suspending a pure alumina tube in the melt during the course of the run. The final slag analyses were used to establish the liquidus boundaries8 in the stability fields of CaO.2Al,O3 and of A120,. ACTIVITY OF SILICA The free-energy change in the reaction has been calculated by Fulton and chipman2 from recent and trustworthy data including heats of formation, entropies, and heat capacities. The more recent determination by Olette of the high-temperature enthalpy of liquid silicon is in satisfactory agreement with the values used and therefore requires no revision of the result which is expressed in the equation: SiO, (crist) + 2C (graph) = Si + 2CO(g.) [1] &F° = + 161,500 - 87.4T The standard state for silica is taken as pure cristobalite and that of Si as the pure liquid metal. Since the melts were made under 1 atm of CO and were graphite-saturated, the equilibrium constant for Eq. [I] reduces to K1 = asi /asio2 The value of this constant is 1.77 at 1600°C and 16.2 at 1700°C. Through K1, the activity of silica in the slag is directly related to the activity of silicon in the equilibrium metal.
Jan 1, 1960
-
Reservoir Engineering – Laboratory Research - An Evaluation of Diffusion Effects in Miscible Disp...By J. G. Richardson, J. W. Graham
The purpose of this paper is to present the results of theoretical and experimental studies of water imbibition. The imbibition processes are involved in recovery of oil from stratified and fractured-matrix formations in natural water drives and water flooding. An understanding of the role of inhibition in implementing the recovery of oil from such formations is deemed essential to proper control of these reservoirs to achieve maximum recovery. The theoretical studies involved development of the differential equations which describe the spontaneous imbibition of water by an oil-saturated rock. The dependence of the rate of water intake by the rock on the permeability, interfacial tension, contact angles, fluid viscosities and fluid saturatiorls is discussed. A few experiments were performed using core samples to determine the effects of core length and presence of a free gas suturation. The role of water imbibition in recovery of oil from a fractured-matrix reservoir by water flooding was investigated by use of a laboratory model. This model was scaled to represent one element of a frac-tured-matrix formation. Water floods were made at various rates with several fracture widths. Interpretations were made of the behavior expected in a system containing many matrix blocks. The presence of a free gas sntu.ration was found to reduce the rate of water imbibition. In the reservoir prototype of the fractured-matrix model, water imbibition rather than direct displacement by water was the dominant mechanism in the recovery of oil at low rates. INTRODUCTION Imbibition may be defined as the spontaneous taking up of a liquid by a porous solid. The spontaneous process of imbibition occurs when the fuid-filled solid is immersed or brought in contact with another fluid which preferentially wets the solid. In the process of wetting and flowing into the solid, the imbibing fluid displaces the non-wetting resident fluid. Common examples of this phenomenon are dry bricks soaking up water and expelling air, a blotter soaking up ink and expelling air and reservoir rock soaking up water and expelling oil. As increasingly better lithological descriptions have been made of the characteristics of petroleum-bearing formations, it has become obvious that imbibition phenomena which were once considered laboratory curiosities are of practical importance. For instance, in reservoirs composed of water-wet sand strata of different permeability in intimate contact, the tendency of water to channel through the more permeable stratum is offset by the tendency for water to imbibe into the tight sand and expel oil into the coarse sand. Also, in fractured-matrix formations the tendency of water to channel through the fractures is offset by water-wet matrix blocks. As some imbibition of the water into the of the largest fields in the world are fractured-matrix reservoirs, it has become increasingly important to understand all the factors involved in the imbibition process. Examples of fractured-matrix reservoirs are the Spraberry field in West Texas which produces from a fractured sandstone', the giant Kirkuk field in Iran', the Dukhan field in Qatar, Persian Gulf2, and the Masjid-I-Sula-main and the Haft-Kel fields in Southwestern Iran, which produce from fissured limestone3. Research into recovery of oil from fractured-matrix formations was stimulated by the rapid decline of oil productivity of wells in the Spraberry formation. One result of this research was the water imbibition process developed by the Atlantic Refining Co.4 Another idea was that much of the Spraberry oil could be recovered by conventional water-flooding procedures5. Subsequently, pilot floods were conducted in this field to test the feasibility of these ideas. It was felt that an understanding of the role played by imbibition processes in displacement of oil from a fractured-matrix reservoir could not be obtained from field data alone because of the many complicating factors and uncertainties involved. Therefore, theoretical and laboratory studies were undertaken to provide this understanding. Study of the equations which describe the linear, countercurrent imbibition process provided an insight into the role of various factors in the process, such as the permeability of rock and inter-facial tension. In addition to the theoretical studies, imbibition experiments were conducted with core samples to determine the effect on the rate of imbibition of such variables as core length and free gas saturation. The principal experimental studies were conducted by water flooding a scaled model of an clement of a frac-tu red-matrix reservoir to evaluate
-
Part VI – June 1969 - Papers - A Comparison of Conventional and Knoop-Hardness Yield Loci for Magnesium and Magnesium AlloysBy B. C. Wonsiewicz, W. W. Wilkening
Following a procedure proposed by Wheeler and Ireland, Plane stress yield loci were constructed from Knoob hardness numbers. Basically, six differently oriented hardness measurements were made on three orthogml surfaces through pure poly crystalline magnesium sheet, a magnesium single crystal, and sheet of the magnesium alloys: Mg + 0.5 pct Th, Mg + 4 pct Li, AZ31B, and EKOO. Hardness loci were found to be in poor agreement at small strains (E < 0.05) with loci established by a more rigorous technique. At larger strains (E - 0.10) the agreement is fair, but at this stage in deformation the conventional locus has lost much of the asymmetry that characterizes these anisotropic materials. Two effects which will lead to distortions in the Khn locus are discussed with reference to the geometry of plastic flow during a hardness test. DETERMINING a material's resistance to multiaxial loading is of interest not only from a structural design viewpoint but also from that of deformation processing. Unfortunately, the determination of the yield locus, although simple in principle, involves tedious procedures if the results are to be at all rigorous.' The idea, first proposed by Wheeler and 1reland2 of determining the yield locus by means of six Knoop hardness impressions along the principal directions in a material has obvious appeal. It is simple, quick, and should be applicable to very thin sheets. If such a technique could be demonstrated to produce consistently reliable results, it would be of interest to both researcher and designer. Lee, Jabara, and ackofen have compared the yield locus determined by Knoop hardness measurements (the Khn locus) to a locus determined by more rigorous techniques. They found good agreement for two titanium alloys at a plastic strain of about 1 pct. The purpose of this paper is to investigate if the Khn locus construction is a reasonable approximation to the locus of a highly anisotropic material. Examples of such materials are magnesium and magnesium alloys which have severely distorted yield loci which in turn reflect markedly dfferent yield strength in different directions.' In pure magnesium, for example, the yield stress in tension along the transverse direction may be four times the yield stress in compression in the same direction and twice the tensile yield stress in the rolling direction. Predicting such large differences ought to serve as a severe test of the Khn locus construction. EXPERIMENTAL PROCEDURES Samples of rolled sheet, 0.250 in. (6.35 mm) thick, of pure magnesium and four magnesium alloys (Mg experimental materials. The pure magnesium together with the lithium and thorium alloys were those used in the study of Kelley and Hosford. The grain size was ASTM number 4 for the pure magnesium and number 6 for the alloys. HARDNESS TESTING The materials were sectioned along the rolling and transverse planes, mounted in a quick setting resin, and mechanically polished. Most of the hardness tests were performed on a surface prepared by electro-polishing (30 pct nitric acid in methanol at 0°C and 20 v) with the exception of the AZ31B and EK00 alloys which were made directly on a metallographically polished surface. However, subsequent hardness tests on the same sample after heavily electropolishing, revealed essentially the same hardness as before. At least twenty Knoop hardness impressions under a 100-g load were made in each of the six orientations shown in Fig. 1. The average hardness number and standard deviation were then calculated for each orientation. CONVENTIONAL LOCUS CONSTRUCTION Yield loci were constructed using a technique described in detail by Lee and ackofen,' in which the flow stress (stress at a given plastic strain) fixes the coordinates of a point on the locus and measurements of the strain ratio serve to establish the slope of the locus at that point. The loading paths which correspond to uniaxial tension or compression tests establish the four intercepts of the locus with the coordinate axes plus one point on the balanced biaxial tension line Tensile testing was performed along the rolling and transverse (r, t) directions. Samples had a uniform rectangular gage length 1 by 4 by 4 in. (25.4 by 6.35 by 6.35 mm) and were deformed at a strain rate of 3.33 x 104 sec-'. The tests were interrupted periodically to unload the sample and measure the plastic strains by means of X-Y post yield strain gages. Compression tests in the rolling, transverse, and through-thickness (r, f, z) directions were performed on 1/4 in. (6.35 mm) cubes at an initial strain rate of 8.33 x sec-'. Lubrication was provided by 0.002 in. (51 pm) Teflon sheet which was renewed after unloading for micrometer measurements used to calculate the strains.
Jan 1, 1970
-
Institute of Metals Division - Some Remarks on Grain Boundary Migration (TN)By G. F. Bolling
STUDIES of grain boundary migration in zone-refined metals have all shown that the rate of migration is greatly reduced by small added solute concentrations. However, it is apparent that a difference exists between boundary migration during normal grain growth and single boundaries migrating in a bicrystal to consume a substructure. To effect the same reduction in velocity in the two cases, much more solute is required for grain growth than for the single boundary experiments. One case is available for direct comparison; both Bolling and winegardl and Aust and utter' added silver and gold to zone-refined lead to study grain growth and single boundary migration, respectively. For comparable reductions in migration rates, about 500 times more solute was required to retard grain growth than to retard the single boundaries. A reason for this difference is suggested here. The rate of grain boundary migration is dependent on solute concentration and must therefore also depend on the solute distribution; i.e., regions of higher solute concentration encountered by a moving boundary must produce greater retardation and thus could determine any observed rate. A dislocation substructure can be the source of a nonuniform solute distribution since it can attract an excess concentration of certain solutes. In fact, it is probable that the solutes which impede grain boundary migration most would segregate most severely to a substructure for the same reasons. Thus a dislocation substructure present in a crystal being consumed could locally magnify the concentration of solute confronting an advancing grain boundary. In the single boundary experiments a low-angle substructure, within single crystals obtained by growth from the melt, was used to provide the driving force to move a grain boundary; in grain growth, no substructure of this magnitude was present. The increased solute concentration at subboundaries should be given approximately by C, = G e c,/kT, where t, is a binding energy and CO the bulk concentration. To account for the difference between the two experiments in the Pb-Ag and Pb-Au cases, C, must be the concentration impeding the single boundary migration, and a value of t, = 0.25 ev is necessary. This is reasonable, even though calculation on a purely elastic basis gives t, = 0.12 ev. because electronic effects must enter for silver and gold in lead. The compound AuPbz forms3 and the metastable compound AgrPb has been reported to nucleate at dislocations prior to the formation of the stable, silver-rich phase.4 Other observations support the hypothesis that a magnified solute concentration impedes the single boundary migration. For example, some crystals were grown by Aust and Rutter at concentrations of ~ 0.1 wt pct Sn and 2 x X at. pct Ag or Au which exhibited a cellular substructure, and in these crystals no boundary migration was observed. It is therefore evident that the higher concentrations at cell boundaries drastically inhibited migration. Inclusions would not have been responsible for this inhibition since according to recent work on cellular segregation,5 no second phase should have occurred in the segregated regions at the cell boundaries for the conditions of growth used, at least in the Pb-Sn system. In the purest lead, only the "special" boundaries observed by Aust and Rutter gave rise to the same activation energy as that obtained in grain growth. It is reasonable to suppose that the structure of special boundaries does not favor segregation at low concentrations and thus solute, or an inhomogeneity in its distribution, would have no effect. Random boundaries, on the other hand, are affected by solute and the substructure would enhance residual concentrations in the zone-refined lead, leading to a higher activation energy. It is clear, even without a detailed theory, that the apparent activation energies and exact solute dependence in the two experiments must be different as long as the non-uniform solute distribution produced by the substructure is important. Recrystallization experiments should also be susceptible to the same kind of local segregation at subboundaries or disloca tion cell walls; a suggestion similar to this has been made by Leslie et al.' Following the arguments presented here, the effects of a given solute concentration would be like those observed by Aust and Rutter if segregation occurred, and like those of grain growth otherwise. This work was partially supported by the Air Force Office of Scientific Research; Contract AF-49(638)-1029.
Jan 1, 1962
-
Institute of Metals Division - Kinetics of the Reactions of Titanium with O2, N2, and H2By E. A. Gulbransen, K. F. Andrew
In a recent communication14 we have reported on the kinetics of the reactions of zirconium with O2, N2 and H2 as a function of the time, temperature and pressure variables. A systematic study was made and the results correlated with fundamental theories of gas-metal reactions. This paper will present a similar study for titanium. Titanium and zirconium are members of the IV group of the periodic table and possess many similar physical and chemical properties as a result of their similar electronic configuration for the outer electrons. The two metals are relatively inert to both gas and liquid phase corrosion at room temperature. However, at moderate temperatures the metals become active and react readily with the common gases including O2, N2 and H2 which are of interest in this study. A study of the kinetics of these gas-metal reactions is of interest for three reasons: (1) to understand the rate of reaction of titanium and its role in the behavior of high temperature alloys; (2) to understand the practical difficulties of the reduction, refining and working of titanium; and (3) to correlate the data with fundamental theories of gas-metal reactions and crystal structure predictions. Literature Survey Several review papers8 and books4243 exist on the preparation and properties of titanium and its alloys. THE METAL Titanium has, at room temperature, a hexagonal lattice of the zinc type. Hagg19 gives a value of 2.953A for the (a) axis, a value of 4.729 for the (c) axis and a density of 4.427 at 20°C. Burgers and Jacobs6 have observed the transformation of the hexagonal to the body-centered cubic structure at 880°C and have established a value of 3.31 for the cube edge and a density of 4.31. TITANIUM-OXYGEN Carpenter and Reavell6 using a pressure change method have studied the reaction at temperatures of 742° and 1000°C and for a pressure of one-fifth of an atmosphere. The probabilities for reaction are calculated from kinetic theory and they report a value of 10-5 for O2 at 1000°C and 10-6 at 740°C. The titanium-oxygen system has been investigated by Ehrlich.10,11 Five phases are observed. Between (TiO2 and TiO1.90) an alpha-phase, consisting ofarutile lattice, is found. A beta-phase is observed between (TiO1.80 and TiO1.70). A gamma-phase is homogeneous between (TiO1.56 and TiO1.46) and has a structure of the corundum type. The delta-phase exists between TiO1.25 and TiO0.6 and has a sodium chloride structure. From TiO0.42 to Ti the metal structure is observed. The surface oxide films have been studied by Hickman and Gulbransen.20 The rutile structure is observed in the temperature range studied, 300 to 700°C. Three crystalline modifications of TiO2 exist: rutile and anatase which are tetragonal and brookite which has an orthorhombic structure. Anatase is reported36 to exist in two forms: I and II. Anatase II changes to anatase I at 642°C. Anatase I is stable up to 915°C where rutile becomes the stable modification. At 1300°C rutile transforms to brookite which melts at 1900°C. The monoxide, TiO, may be prepared from the dioxide by high temperature reduction with carbon or magnesium. Its melting point is 1750°C. TITANIUM-NITROGEN Carpenter and Reavell6 report that at 1000°C a linear rate law is observed. The probability of reaction is given as 10-8 at 1000°C. Fast12 has studied the solubility of nitrogen and its effect on the mechanical properties of the metal. The crystal structure of TiN has been shown by several workers2'21'44 to follow the sodium chloride structure. However, the calculated density is found to differ from the pycnometric value. This is studied by Brager3,4 in detail. He has suggested that the titanium sites in the lattice are only partially filled at low temperatures. As the temperature of preparation is raised the vacant sites become occupied which expands the lattice and increases the hardness and density. An (a) value of 4.22Å is given for room temperature. TITANIUM-HYDROGEN The solubility and the crystal structures observed in this system have been reviewed in a recent book by Smith.40
Jan 1, 1950
-
Factors Influencing Selective Flocculation-Desliming Practice at the Tilden Mine (18d5713b-0751-4800-b56b-be99b6708fab)By W. A. Turcotte, A. D. Paananen
Introduction The large reserve of fine grained oxidized iron-formation at the Tilden mine has been the object of research and development efforts to concentrate the iron oxides as far back as 1949. Due to the nonmagnetic nature of the ore and the fine grinding required to liberate the iron oxide minerals, this crude ore was not amenable to concentration by conventional methods. The iron oxides of the Tilden, ore body have a grain size of less than 25 microns and recovery of the finer, well-liberated iron oxides is essential. Conventional methods of desliming employing cyclones or thickeners were not feasible because of the excessive loss of iron oxides in the finer fractions. Development of selective flocculation-desliming was a key to commercialization of the process. Operations started in late 1974 with Algoma Steel Corp. Ltd., J & L Steel Corp., The Steel Company of Canada Ltd., Wheeling-Pittsburgh Steel Corp., Sharon Steel Corp., and The Cleveland-Cliffs Iron Co. as participants. Cleveland-Cliffs operates and manages the operation. Development of the Tilden Flowsheet The geology and ore reserves of the Tilden mine have been detailed in a paper by Villar and Dawe (1975). A joint program was undertaken in 1961 with the US Bureau of Mines in Minneapolis using the flowsheet developed by the Bureau employing the selective flocculation-desliming and calcium activated anionic silica flotation method (Frommer, et al, 1966; Frommer, 1964; Frommer, Wasson, and Veith, 1973). During this time, parallel testing at Cleveland-Cliffs Research Laboratory and Pilot Plant centered on the same type of desliming but was followed by the cationic flotation of silica with amine collectors (Columbo and Jacobs. 1976). The cationic silica flotation system was eventually chosen for its overall efficiency and simplicity. Regardless of the flotation method chosen, the technique of selective flocculation-desliming prior to flotation is the key to the success of the process. The flowsheet is described in detail by Villar and Dawe (1975). [Figure 1] shows a simplified one-line flowsheet of the Tilden concentrator. A total tailings thickener has been added to the original flowsheet and was placed in operation in 1978. The total-tailings thickener overflow reports to the reuse water pond and the underflow is pumped approximately 8 km (5 miles) to a storage basin. A flowsheet of the reuse water system is shown in [Fig. 2]. Selective Flocculation-Desliming Data have been published on the mechanisms and factors affecting selective flocculation in iron oxide-silica systems. The intent of this paper is not to discuss the theoretical aspects of selective flocculation, but rather to present experience gained from the commercial Tilden operation and from bench and pilot plant testing of fine-grained oxidized iron ores. From the bench and pilot plant testing prior to plant startup, certain reagent combinations and rates for the commercial Tilden plant were established. In the experience gained from three years of plant operation at Tilden, some of these reagent dosage rates have required significant adjustments due to changes in reuse water quality and to meet the requirements of varying ore types. Reuse Water The process water quality is a major concern at the Tilden mine and is constantly being monitored for selected chemical and physical characteristics. This monitoring has continued on a regular basis in order to gain a more thorough understanding of the interactions taking place in a dynamic water system and particularly as water quality is influenced by seasonal variations. Control of the reuse water chemistry is essential to the Tilden process both in the selective flocculation-desliming and flotation stages of concentration. With roughly 75% of the reuse water used in grinding-desliming operations, it is readily apparent that the biggest "reagent" in the selective flocculation-desliming process is water. Not enough can be said about the close control that must be exercised on the overall reuse water system. Control of the chemical treatment of the feed to the total tailings thickener is of utmost importance in order to produce a reuse water for the concentrator that is compatible with all stages of the concentrating process. There are many analyses made which aid in judging the quality of the water. Some of these are shown in [Table 1]. Five are particularly important and are monitored daily so that reagent adjustments can be made as required: suspended solids, calcium hardness, pH, dissolved silica concentration and temperature.
Jan 1, 1981
-
Uranium Ore Body Analysis Using The DFN TechniqueBy James K. Hallenburg
INTRODUCTION The delayed fission neutron, or DFN technique for uranium ore body analysis uses the first down-hole method for detecting uranium in place quantitatively. This technique detects the presence of and measures the amount of uranium in the formation. DFN TECHNIQUE DESCRIPTION The DFN technique depends upon inducing a fission reaction in the formation uranium with neutrons, resulting in an anomalous and quantitative return of neutrons from the uranium. Since there are no free, natural neutrons in formation, a good, low noise assessment may be made. There are several methods available for determining uranium quantity in situ. The method used by Century uses an electrical source of neutrons. This is a linear accelerator which bombards a tritium target with high velocity deuterium ions. The resulting reaction emits high energy neutrons which diffuse into the surrounding formation. They lose most of their energy until they come to thermal equilibrium with the formation. Upon encountering a fissile material, such as uranium, these thermal neutrons will react with the material. These reactions produce additional neutrons, the number of which is a function of the number of original neutrons and the amount of fissile material exposed. The particular source used, the linear accelerator, has several distinct advantages over other types of sources: 1. It can be turned off. Thus, it does not constitute a radioactive hazard when it is not in use. 2. It can be gated on in short bursts (6 to 8 microseconds). This results in measurements free of a high background of primary neutrons. 3. The output can be controlled. Thus, the neutron output can be made the same in a number of tools, easily and automatically. There are several interesting reactions which take place during the lifetime of the neutrons around the source. During the slowing down or moderating process the neutron can react with several elements. One of these is oxygen 17. This results in a background level of neutrons in any of the measurements which must be accounted for in any interpretation technique. These elements are usually uninteresting economically. The high energy neutrons will also react with uranium 238. However, the proportions of uranium 235 and 238 are nearly constant. Therefore, this reaction aids detection of uranium mineral and need not be seperated out. Upon reaching thermal energy the neutrons will react with any fissile material, uranium 235, uranium 234, and thorium 232. At present, we do not have good techniques for seperating out the reaction products of uranium 234 and thorium 232. However, uranium 234 is a small (.0055%) percentage of the uranium mineral and thorium 232 is usually not present in sedimentary deposits. When the uranium 235 reacts with thermal neutrons it breaks into two or more fragments and some neutrons. This occurs within a few microseconds after the primary neutrons have moderated and is the prompt reaction. One system uses this; the PFN or prompt fission neutron technique. We don't use this method because the neutron population is low and, therefore, the signal is small and difficult to work with, accurately. Within a few microseconds to several seconds the fission fragments also decay with the emmission of additional neutrons. Now, with a long time period available and a large neutron population we gate off the generator and measure the delayed fission neutrons after a waiting period. These neutrons can be a measure of the amount of uranium present around the probe. Thermal neutrons are detected with the DFN technique instead of capture gamma rays to avoid some of the returns from other elements than uranium. LOGGING TECHNIQUE The exact logging technique will depend, to some extent, upon the purpose of the measurement. However, the general technique is to first run the standard logs. These will include: 1. The gamma ray log for initial evaluation of the mineral body and for determining the position of the borehole within the mineral body, 2. The resistance or resistivity log for determining the formation quality, lithology, and porosity. 3. The S. P. curve for estimating the redox state and shale content, and measuring formation water salinity, 4. The hole deviation for locating the position, depth, and thickness of the mineral (and other formations), and 5. The neutron porosity curve. The neutron porosity curve is most important to the interpretation of the DFN readings. The neutrons from this tool are affected in the same way by bore hole and formation fluids as the DFN neutrons are. Therefore, we can use this curve to determine effect of the oxygen 17 in the water. Of course, this curve can be used to determine formation porosity. It can also be used to calculate formation density.
Jan 1, 1979
-
Geophysics - The Gravity Meter in Underground ProspectingBy W. Allen
FOR the past six years gravity surveys have been used for underground prospecting in the copper mines at Bisbee, Ariz. The primary purpose of the surveys has been to reduce the diamond drilling and crosscutting necessary for exploration. Since many of the orebodies are small, and geologic control is not always apparent, any information that will direct the drilling and crosscutting is highly desirable. Because of extensive development and exploration work in the copper mines at Bisbee, it has been possible to cover more than 630,000 ft of crosscuts on 30 levels with the gravity surveys. In the process the gravity procedures have been refined to a high degree. Density Contrast: For a gravity survey to be successful, a sufficient density contrast must exist between the geologic feature sought and surrounding host rocks. Most mineralized areas will provide this contrast if fairly massive bodies are present. In the Bisbee area the entire sequence of formations, except for alluvium, appears to have specific gravities ranging from 2.65 to 2.70. These values have been determined by means of a large number of cut samples and diamond drill cores. As a further check, vertical gravity differences have been used where nonmineralized sections are known to occur.' The only known major gravity disturbances result from mineralization that has increased the density and the voids that have decreased density. The voids are caused by mining operations and by underground water movement that has developed several areas of caverns. Equipment: While not absolutely essential, a small rugged gravity meter, such as the Worden meter, is highly desirable. A tall tripod, about the height of a transit tripod, permits instrument set-ups in deep water and in locations where fallen timber and muck piles make it impossible to use a short tripod. An additional advantage of a tall tripod is that it places the meter in the center of the crosscut, reducing the error caused by the crosscut void. Size and weight are important, since the only satisfactory means of operating the meter underground is to carry it by hand. A backpack can be used in rare instances but is usually a hindrance because of the close station spacing. The operator's ability to move through tight clearances will improve survey coverage, as it is then possible to move through raises and caved areas and to pass mine cars and machinery with a minimum of trouble. Station Control: Gravity stations are normally located every 100 ft along the crosscuts, at each intersection, and in the face of all stub crosscuts. In areas of high gravity relief, or where small anomalies might be expected, stations may be located at 25 or 50-ft intervals. When possible, the stations should be offset to avoid effects of raises or other voids. The gravity stations on a level are tied to one or more base stations, which are usually located at the shaft or near the portal of an adit. The base stations may be part of a gravity control net that extends to each level in the mine as well as to the surface. Such a net extending throughout the potential area of the surveys is highly desirable, as it is then possible to compare all gravity stations on a uniform basis. The stations that are part of the base net should be carefully established by multiple readings and, if necessary, by a least squares adjustment of the loops. In some instances where levels do not have a shaft station, or where access may be blocked by caving, it may be necessary to establish secondary bases at the top and bottom of the raises that are between levels. Under fair conditions 70 to 90 gravity stations can be located and run in 6 hr by a two-man crew. The best field procedures depend on conditions. Reduction of Field Data: Most of the time required to produce a final gravity map is consumed in processing the data. Each meter reading must be corrected for a minimum of five factors that affect the gravity value in addition to the density contrast being sought. These factors are 1) instrumental drift, 2) station elevation, 3) topography, 4) latitude, and 5) regional gravity gradient. Mine openings, such as stopes and raises, will affect the value. However, it is seldom practical to make corrections for these voids. Usually a rotation is made on the field note on the station, and any
Jan 1, 1957
-
Technical Notes - Matrix Phase in Lower Bainite and Tempered MartensiteBy F. E. Werner, B. L. Averbach, Morris Cohen
THAT bainite formed near the M, temperature bears a striking r esemblance to martensite tempered at the same temperature has been shown by the electron microscope.' By means of electron diffraction,' it has been established that carbide and cementite are present in bainite formed at 500°F (260°C); these carbides are also found in martensite tempered at 500°F (260°C).' The investigation reported here is concerned with an X-ray study of the matrix phases in lower bainite and tempered martensite. These phases have turned out to be dissimilar in structure; the matrix of bainite is body-centered-cubic while that of tempered martensite is body-centered-tetragonal. A vacuum-melted Fe-C alloy containing 1.43 pct C was studied. Specimens of 16 in. diam were sealed in evacuated silica tubing and austenitized at 2300°F (1260°C) for 24 hr. One specimen was quenched into a salt bath at 410°+7 °F (210°+4°C), held for 16 hr, and cooled to room temperature. The structure consisted of about 90 to 95 pct bainite, the re: mainder being martensite and retained austenite. A second specimen was quenched from the austen-itizing temperature into iced brine and then into liquid nitrogen. It consisted of about 90 pct martensite and 10 pct retained austenite. The latter specimen was tempered for 10 hr at 410°+2°F (210°+1°C). The specimens were then fractured along prior austenite grain boundaries (grain size about 2 mm diam) by light tapping with a hammer. Single aus-tenite grains, mostly transformed, were etched to about 0.5 mm diam and mounted in a Unicam single crystal goniometer, which allowed both rotation and oscillation of the sample. Lattice parameters were measured by the technique of Kurdjumov and Lyssak. This method takes advantage of the fact that martensite and lower bainite are related to austenite by the Kurdjumov-sachs orientation relationships Thus, the (002) and the (200) (020) reflections can be recorded separately, permitting the c and a parameters to be determined without interference from overlapping reflections. According to these findings, the matrix phase in bainite is body-centered-cubic and, within experimental error, has the same lattice parameter as ferrite (2.866A). On the other hand, martensite, tempered as above, retains some tetragonality, with a c/a ratio of 1.005t0.002. Most workers in the past have assumed that bainite is generated from austenite as a supersaturated phase, but the nature of this product has not been established. The question arises as to whether bainite initially has a tetragonal structure and then tempers to cubic, or if it forms directly as a cubic structure. If it forms with a tetragonal lattice, it might well be expected to temper to the cubic phase at about the same rate as tetragonal martensite. The martensitic specimen used here was given approximately the same tempering exposure, 10 hr at 410°F, as suffered by the greater part of the bainite during the isothermal transformation. About 50 pct bainite was formed in 6 hr at 410°F. On tempering at this temperature, martensite reduces its tetragonality within a few minutes to a value corresponding to 0.30 pct C.' Further decomposition proceeds slowly, and after 10 hr the c/a ratio is still appreciable, i.e., 1.005. Thus, even if the bainite were to form as a tetragonal phase with a tetragonality corresponding to only 0.30 pct C, which might be assumed to coexist with e carbide, it would not be expected to become cubic in this time. It seems very likely, therefore, that bainite forms irom austenite as a body-centered-cubic phase and does not pass through a tetragonal transition. The carbon content of the cubic phase has not been determined, but it could easily be as high as 0.1 pct, within the experimental uncertainty of the lattice-parameter measurements. It has been postulated that retained austenite decomposes on tempering into the same product as martensite tempered at the same temperature. There is now considerable doubt on this point. The isothermal transformation product of both primary and retained austenite at the temperature in question here is bainite," and the present findings show that bainite and tempered martensite do not have the same matrix. Acknowledgments The authors would like to acknowledge the financial support of the Instrumentation Laboratory, Massachusetts Institute of Technology, and the United States Air Force.
Jan 1, 1957
-
Discussion - Impacts Of Land Use Planning On Mineral Resources - Technical Papers, Mining Engineering, Vol. 36, No. 4, April, 1984, pp. 362 -369 – Ramani, R. V., Sweigard, R. J.By G. F. Leaming
The paper by R.V. Ramani and R.J. Sweigard is a wonderful description of the labyrinthine web that has been spun about the mining industry by energetic bureaucrats and politicians over the past 50 years. The remedy for the problem, however, is not more of the same, but less. That may be difficult for the industry to achieve, for it is not a technical solution but a political one. And the current fervor for more detailed planning at all levels of government and private enterprise has become deeply ingrained. The authors recommend the provision of more information about mining and mineral resources to "macro" (i.e., government) land use planners. They apparently overlook, however, the already strong tendency on the part of most government land use planners to consider themselves omniscient. Thus, giving them more information about the technical problems of mining will only make them want to get more and more involved in the "micro" (private, site specific) mine development and production plans of the individual mining firm. In fact, this has already happened at all levels of jurisdiction from municipal to federal government. Examples are legion. The most effective way to ameliorate the adverse impacts of government land use planning on existing and potential mining operations is to: (1) introduce greater flexibility in the definition of land use zones by local and state governments; (2) adopt realistic and relevant ambient environmental performance standards in governing relationships between mineral land uses and concurrent or subsequent nonmining land uses; (3) allow greater leeway for economic considerations in land use decisions in contrast to the explicit legalistic approach now in vogue; (4) recognize that all minerals are not the same and that sand and gravel mining should not be treated the same as underground metal mining, coal stripping, oil field production, or in situ leaching; and (5) eliminate the notion that mining operators should be responsible for determining in detail the use of land by subsequent owners of mined land. This last bit of conventional ethic really makes no more sense than requiring the builders of every shopping center or government office complex to provide detailed plans for the use of that land when its use for shopping or government is ended. Did the builder of Ebbetts Field plan for Brooklyn after the Dodgers went to Los Angeles? Should the developer of the Bingham Pit plan for suburban Salt Lake City after the copper mining goes to Chile? The nation's mining industry must address these questions before further bankrupting itself to provide more data to planners and spending thousands of dollars per acre to create land that when reclaimed is worth only a few hundred dollars per acre. ? Reply by R.V. Ramani and R.J. Sweigard We thank Mr. Learning for his valuable contribution. His views on the problems of land use planning and mineral resources are most welcome additions to our paper. As the title indicates, our paper was more concerned with the impacts of land use planning on mineral resource conservation than with the details of the planning process. On the whole, his five recommendations would be helpful for mineral resource conservation. However, we would suggest that the argument he presents for his final recommendation does not address the differences between mining as a land use and commercial or institutional uses. We believe that this difference is the crux of the issue. We share Mr. Learning's desire to ameliorate the adverse impacts of land use planning. Possibly the most detrimental impact is the loss of mineral resources. Any development, whether mineral or community, that does not give proper consideration to other resources can result in permanent loss or sterilization of resources. With proper planning, some of these losses can be avoided. As our paper indicated, one factor that limits the consideration of mineral resources, and ultimately leads to their sterilization, is the generally inadequate levels of resource characterization and understanding of the unique nature of mineral resources and mining operations. The last point raised by Mr. Learning is also important. In terms of reclamation and land use planning in mining districts, we certainly do not advocate spending more than what the results are worth. The main thrust of the paper was to explore the avenues for conserving the mineral resources so that, at some appropriate time, the issue of mining and reclamation can still be addressed. ?
Jan 1, 1986
-
Institute of Metals Division - Rapid Freeze Method for Growth of Bismuth Single CrystalsBy Sidney Fischler
Large striation-free single crystals of bismuth have been grown from the melt by rapid freezing. Zone-refined bismuth, together with doping impurities if desired, is placed in a shallow flat-bottomed graphite boat and melted in air with a propane hand torch. The torch is then withdrawn in a manner which causes the melt to freeze direction-ally. Crystallization, which resuires only a few minutes, usually results in the formation of a single crystal even when a seed crystal is not used. Crys -tals of any desired orientation may be grown by using oriented seeds. Undoped crystals grown by this method have residual resistivity ratios greater than 200. THE growth of large single crystals of bismuth by either the Czochralski or horizontal zoning technique is not entirely satisfactory. Specifically, difficulties are encountered in producing single crystals of the required dimensions in all desired orientations, and striations caused by low-angle polysynthetic twins are frequently present in the crystals. In addition, both methods are time-consuming and require special apparatus of some complexity. A simpler method has now been developed for growing large striation-free bismuth single crystals of desired orientation in a short time. Fig. 1 shows a typical setup consisting of a rectangular graphite boat which contains zone-refined bismuth, a 1/8-in.-thick flat quartz plate which covers the entire inner bottom of the boat, and three additional quartz plates about 1/4 in. thick which are used to separate the bismuth from the graphite everywhere except at a small area at the left of the boat. The graphite boat is 1 in. high, and its sides and bottom are about 1/8 in. thick. The quartz plates should be smooth and clean. The graphite boat is heated from the right with a propane torch, as shown in Fig. 1, until the bismuth is completely melted. The melt has the shape of a triangle with a narrow neck at the apex farthest from the torch. The melt is frozen direc-tionally by gradually moving the torch toward the right, away from the boat. The bismuth in contact with the graphite, at the left end of the neck, freezes first. The freezing interface then moves down the neck into the main bulk of material, where it develops a convex shape ideal for the continuation of single-crystal growth. The interface continues to move through the melt until the entire bulk is solid. The entire procedure may be completed, in air, in a matter of minutes. The technique described almost always yields a single crystal whose basal plane is nearly perpendi,cular to the bottom of the graphite boat. In earlier experiments, in which the bottom of the melt was in direct contact with the graphite boat, single crystals were grown with basal planes parallel, perpendicular, or at some intermediate angle to the bottom of the boat. At times the orientation of the bulk of the material differed from the orientation of the material in the narrow neck. In these cases, a nucleation site initiated the growth of a differently oriented crystal, and the thermal conditions favored the new orientation over the initial one. The thermal conditions depend on a number of factors, including the heating technique, the placement, shape, and thickness of the quartz plates, the thickness of the walls and bottom of the graphite boat, and the quantity of bulk bismuth employed. All of these factors, plus the initial orientation and the presence and effectiveness of nucleation sites, will determine the orientation of the final large single-crystal slab. When a crystal of specific orientation is desired, an oriented section of a rapid-freeze crystal is shaped by spark cutting and grinding for use as a seed. To grow a doped crystal, the desired impurity is placed in the graphite boat together with the bismuth chunks and seed. Crystals doped with mercury, cadmium, lead, and selenium have been grown. The rate of freezing is so great that the distribution coefficient of any impurity approximates unity. On a gross scale, therefore, impurities should be more homogeneously distributed in rapid-freeze crystals than in Czochralski or zoned crystals. Because of the possibility of constitutional supercooling, however, it is quite possible that impurities are not homogeneously distributed on a microscopic scale in the rapid-freeze crystals. Generally the single crystal slabs which have been prepared are initially 5 to 7 mm thick. Thicker crystals may be obtained by using one of these slabs as a seed. The slab is placed in a graphite boat resting on a large aluminum block, either air- or
Jan 1, 1964
-
Part X – October 1968 – Communications - On the Transformation of ZrCr2By O. G. Paasche, Yuan-Shou Shen
THERE is a disagreement among the various authors about the exact manner of transformation of ZrCr2. Rostokerl and others2 stated that ZrCr2 had a C-14 (MgZn2) type of structure below 1000°C and a C-15 (MgCu2) type of structure at temperatures above 1000°C. Alisova3 and others4 reached the opposite conclusion and stated that the transformation temperature is close to the melting point of ZrCr2. A literature survey shows that various investigators3'= who homogenized the specimens at a temperature higher than 1000°C have concluded that ZrCr2 had the C-15 structure at room temperature. Meanwhile, Jordan et al.4 reached similar conclusions without annealing the specimen. Other investigators1,2,6,7 who X-rayed the specimens in the as-cast condition without annealing reached different conclusions. The investigation reported herein was conducted with the aim of exploring the exact manner of transformation of ZrCr2 by various heat treatment tests. The alloys for this examination were prepared from iodide-reduced zirconium crystal bars, 99.9 pct purity, and electrolytic chromium, 99.9 pct purity. They were melted in a nonconsumable electrode arc furnace with water-cooled copper crucible in a helium atmosphere. The melting loss of each alloy was less than 1.5 pct by weight. Chemical analysis of a randomly selected specimen indicated that there was a very close agreement between calculated and analyzed compositions. Before being heat-treated each specimen was encapsulated in a vycor or quartz tube inside which an argon atmosphere was maintained at a pressure of lower than 1 atm. In determining the crystal structure of each specimen with a Debye-Scherrer camera, the standard procedure8 for X-ray quality analysis (Hanawalt method) was followed. The different series of heat treatment tests in this investigation are tabulated in Tables I and 11. The tests in Series I, specimens from 1-1 to 1-9, which were similar to Rostoker's experiment1 indicated that the transformation temperature seemed to fall between 870° and 900°C and that the crystal structure of ZrCr2 at lower temperature seemed to be of the C-14 type. However, once the compound is transformed to C-15 type, it is impossible to reverse the transformation back to the C-14 type by first heating the specimen above 900°C and then annealing it slowly below 900°C as shown in Experiments II-1 to II-3. Thus, it appears that the specimen of ZrCr2 will transform from C-14 to C-15 structure when heated above 900°C but will not transform from C-15 to C-14 when annealed slowly passing 900° C even after the extremely slow cooling process such as indicated in the experiment of Specimen II-3. As a valid transformation temperature is a temperature at which the transformation is reversible, therefore the temperature 900°C (or other temperature close to 900°C) is not the transformation temperature for ZrCr2 and the C-14 structure is not the stable structure of ZrCr2 at lower temperatures. The C-14 structure is retained at room temperature because the transformation to C-15 structure is very sluggish and the fast cooling after melting does not allow enough time for the transformation to take place. Additional energy is required to alter the metastable condition of the C-14 structure. The sluggishness of this transformation was again demonstrated through another series of experiments. Four specimens with C-14 structure were taken. Then they were annealed at 900°C but each specimen was soaked for a different period of time, Table 11. X-ray diffraction patterns of this group indicated that the C-14 structure gradually disappeared as the soaking period was lengthened. The figures listed under the column "C-14 Structure, pct" were estimated from the intensity of the d = 2.330 line of the diffraction pattern corresponding to the structure. Notice that the intensity of this line became weaker for longer soaking periods. To determine the transformation temperature of ZrCr2, specimens with C-14 structure (as-cast condition) were annealed at 1300°, 1400°, 1500°, 1550°, and 1600°C, respectively. A final specimen was first heat-treated to 1500°C in order to transform it to C-15 structure, then heat-treated at 1600°C again. From the X-ray analyses of this series of tests, Specimen Nos. III-1 to III-6, it is evident that a transition from C-15 structure at lower temperatures to the C-14 structure occurs at some temperature between 1550° and 1600°C.
Jan 1, 1969
-
Minerals Beneficiation - Energy Transfer By Impact - DiscussionBy J. P. Zannaras
Referring to the article by R. J. Charles and P. L. de Bruyn, let us assume that W = weight of glass bar; P = weight of hammer; e = total deformation; K = unit of deformation; K = potential stress energy; E = modulus of elasticity; L = length of the bar; 7 = coefficient of inertia; h = height, ft; V = velocity, fps; and a = cross section area. The portion of kinetic energy which is effective in producing stress energy in a fixed bar struck horizontally is given by the formula" 1 + 1/3 W/P K =1+1/3w/p/(1+1/2w/p)2 P.V2/2g = Ph where 1 + 1/3 W/P ? (1 + 3W/P/(1=1/2w/p)2 [8] Putting e e = W/P =------------ From the above equation it can be seen that the maximum transfer of kinetic energy to stress energy is when e = 0 or W/P = 0 which indicates that the weight of the hammer must be very large as compared with the weight of the impacted rod. Eq. 8 diametrically opposes the conclusions reached by the authors of this article. In fact, if their suggestions were followed to the extreme when e = co when P = 0, there would be no transfer of kinetic energy to stress energy at all, as 7, becomes zero. Eq. 8 presumes that the velocity with which the stress is propagated through the bar is infinite, whereas the authors claim that the compression waves reflected are reaching the struck end of the bar prior to the complete transfer of the kinetic energy to cause such modification of the conditions there as to make them reach the reverse conclusions demonstrated by the above formula. That such interference exists is unquestionably demonstrated by the authors and others. However, if my observations are correct, such interference for this specific experiment and also for practical comminu- tion is insignificant, and the conclusions of the authors are in error and must be reversed to comply with Eq. 8. Eq. 5, w. = AE 2/2, given by the authors on page 51, is derived from the following equation (Eq. 9): K = 1/2Pe, where P = Sa, S = ?E, e = EL, and L = 1. The above formula, Eq. 9, cannot be applied in this case. This formula is applicable for static loads where the load increases from zero up to its final value, P, in such a way that the deformation at different instants is proportional to the loads acting at those instants and actually represents the area of a right triangle in the strain load diagram of base e and height P. The typical photographs shown in Figs. 3 and 4 represent the familiar strain load diagrams, and since the line of the wave marks the existence and intensity of the strain with the unquestionable conclusion that such strain has been caused by the action of a load acting continuously all along the wave until it reached the horizontal axis, the work stored at this point is represented by the area under the wave line and the horizontal axis and not by the area of the fictitious triangle given by the authors. Then if this is correct, even visual estimation of these areas at gage stations given in the typical photographs of Figs. 3 and 4 suffice to contradict the authors' calculation given in Figs. 6a and 6b and Figs. 7a and 7b. The typical photographs presented by Charles and de Bruyn show a considerable variation of the intensity of the strain at different stations but very small variation of areas which actually represent the stress energy at the corresponding stations. And, apparently, by squaring the small quantities, the authors magnified their error tenfold. J. M. Frankland's paperV iscusses the relative strain intensity and not the total energy for different types of impact loading. He states in his paper, "The reader is explicitly warned not to confuse the results in this report with those obtained when the load is applied by a blow as from a hammer. In this case the peak load rises to very large but mostly unknown values. The accompanying large deflections and stresses are the result of high values of P, not of the dynamic load factor n. According to Frankland "the dynamic load factor" is the numerical maximum of the response factor. It therefore appears that the authors followed the same procedure in obtaining the relative strain energy ab-
Jan 1, 1957
-
Technical Notes - Relationships Between the Mud Resistively, Mud Filtrate Resistivity, and the mud Cake Resistivity of Oil Emulsion Mud SystemsBy Norman Lamont
The evaluation of certain reser-voir properties, such as porosity and fluid saturation, from electrical well surveys has been widely accepted in petroleum engineering. Various investigators have established relationships between these properties and certain parameters which affect the response of the electrical log. Among these are the resistivities of the mud, its filtrate, and its filter cake. In 1949, Patnode1 established a relationship between the resistivities of the mud and filtrate. The well logging service companies have contributed relationships for the mud-mud cake resistivities2,3 These have been valuable since it was the practice to measure only resistivity of mud at the well site. During the mid-1940's the industry began drilling wells with oil-emulsion drilling fluids. These were conventional aqueous muds with a dispersed oil phase. Since 1950, oil-emulsion muds have been used on an increasing number of wells each year. However, the practice of measuring only the resistivity of the mud at the well site has continued, and the mud filtrate and mud cake resistivities have been determined by the above-mentioned relationships. Service companies are now equipped to measure all three resistivities at the well site. An investigation was conducted on the resistivities of oil-emulsion muds, mud filtrates, and mud cakes to determine if these values conformed to the relationships for aqueous muds. TYPES OF MUDS Fifty-one oil-emulsion mud samples were prepared in the laboratory following a standard manual' published by a leading mud company. The diesel oil in the samples varied from 5 to 50 per cent, the majority of the samples being in the 10 per cent region. The basic aqueous mud types which were converted to oil-emulsion muds were commercial clay and bentonite muds, low pH and high pH, caustic-quebracho treated muds, and lime treated muds. The emulsions were stabilized by dispersed solids, lignins, lignosulfo-nates, sodium carboxymethyl cellulose, or sulfonated petrolatum. It is worthy of note that after a quiescent period of two weeks at room temperature all samples, regardless of emulsifying agent, remained stable. The make-up water for the muds was from the laboratory tap. Resistivities were varied by the addition of table salt to the water. A range of mud resistivities from 0.44 to 3.9 ohm-m was obtained in this way. Twenty-three field muds were tested. These covered the same range of mud types as did laboratory muds. Oil provinces of the Gulf Coast, South Texas, West Texas, Oklahoma, Montana, and Canada were represented. MUD TEST PROCEDURE Each mud was tested for density, viscosity, pH, and filter loss by standard testing techniques. The resistivity measurements were obtained with a Schlumberger EMT meter. This meter required small volumes of sample, e.g., 2 mm. Filtrate was obtained from a Standard Baroid fil-ter press at the end of a 30-minute test. The filter cake from the same test was used for cake resistivity measurements. Mud, filtrate, and cake samples were heated to 100" F in a constant temperature water bath prior to measurement of resistivities. RESULTS The relation between mud resistivity (Rm) and mud filtrate resistivity (Rmf) is shown in Fig. 1. The solid line represents an average for the data. The equation of this line is Rmf =0.876 (Rm) 1.075 . . (1) Arbitrary limits, indicated by the dashed curves, have been set. The majority of the data falls within these limits, but some points do lie outside the limits. The approximate equation Rmt = 0.88 Rm , . . . . (2) will give satisfactory results within these limits. The data on mud cake resistivity Rmc is shown in Fig. 2. The solid line is an average for the data. The equation for the line is Rmc = 1.306 (Rm)0.88 The dashed lines are arbitrary limits on the data. Within these limits, Eq. 3 may be simplified to Rmc = 1.31 Rm . . . . (4) DISCUSSION The limiting curves in Figs. 1 and 2 represent maximum deviations of ±25 per cent. Thus the use of the average curves can introduce considerable error. There is no substitute for accurate measurements of mud, mud cake, and mud filtrate resistivities at the well site. The mud sample tested should be representative of the mud opposite the formation being logged. The average mud filtrate resistivity curve of Fig. 1 is reproduced in Fig. 3 with two curves which have been published for clay-base aqueous muds2,3. The latter curves were determined from average values of a large number of drilling fluids. The three curves have essentially the same slope and the differences between them are from 7 to 22 per cent. Comparison is made only to illustrate the possibility of error
Jan 1, 1958
-
Technical Notes - Structure and Crystallography of Second Order Twins in CopperBy C. G. Dunn, M. Sharp
IN twinned crystals of the face-centered cubic metals the lattice of one twin is a mirror image of the other in a common twin boundary. When several twins appear within large grain in a sheet specimen, the twin one boundaries form a set of lines at the surface of the specimen which coincide with (111) planes of the large grain. Furthermore, for twins of the same orientation, these lines are parallel. Generally, the presence of identically oriented regions with straight parallel boundaries coinciding with a (111) plane of the surrounding crystal is strong evidence for identifying the island regions as twins of the parent crystal. However, Fig. 1, which shows the macrostructure of a large grain of copper with island regions that satisfy these conditions. is not an illustration of (111) twins. Since the reverse side of the specimen has much the same appearance, it was thought at first that these regions, which appear dark in the macrograph, actually were twins. According to X-ray data, however, these regions are second-order twins of the large crystal. With regard to their formation, these second-order twins formed by secondary recrystallization in a cube texture matrix. Growth occurred in the direction of the arrow (see Fig. 1) as the specimen moved slowly into a gradient temperature furnace as described previously.' Nucleation of the second-order twins occurred, therefore, on the ends facing opposite the arrow. If the origin of the second-order twins were due to repeated twinning, some first-order twin structure should be visible on these ends. This proved to be the case, as very small twins were readily found with the aid of a microscope, and probably could have been seen, in some instances, under ideal lighting conditions without aid of a microscope. Fig. 2 shows a cross-section view taken perpendicular to both the surface and the (111) trace of the parent crystal (visible as a straight boundary in Fig. 1) at the beginning point of growth of a second-order twin and where one first-order twin was relatively thick. In the micrograph, A is the large parent grain; B is the first-order twin of A; and C, which is a first-order twin of B; is a second-order twin of A. Between A and B and between B and C the major straight portions are traces of common (111) twin boundaries. The straight portion of boundary between A and C, however, is not a common crystallographic plane to the two lattices; it is a (111) plane of A and a (115) plane of C. Without considering the mechanism of twinning itself, the origin of the second-order twins may be accounted for in terms of repeated twinning and special growth characteristics. After each nucleation, a selective growth process can be thought of as favoring growth of the first-order twin in local spots only and favoring growth of the second-order twin to an extent comparable with that of the parent grain over relatively large areas in a way similar to that described for twinning in aluminum.' It has already been pointed out that the boundary between the large grain (A) and the second-order twin (C), which is responsible for the straight boundary portions in Fig. 1, involves a (111) plane of A and a (115) plane of C. The same combination of planes is not only possible in first-order twins, but actually appears quite frequently.3 Their prevalence in first-order twins and their presence here in second-order twins, together with the necessary occurrence of a large number of common lattice sites at the boundary, is an indication that this combination produces an "energy cusp"' boundary. (Energy cusp boundaries have been described by Shockley and Read.") The configuration of atoms near a {Ill), (115) boundary in first-order twins is of course different from the configuration near the same type of boundary in second-order twins. References 1 M. Sharp and C. G. Dunn: Secondary Recrystallization Texture in Copper. Journal of Metals (January 1952) Trans. AIME, p. 42. 2W. G. Burgers and W. May: Stimulated Crystals and Twinning in Recrystallized Aluminum. Recueil des travaux chimiques des Pays-Bas (1945) 64, p. 5. aD. Whitwham, M. Mouflard, and P. Lacombe: Discussion of W. C. Ellis and R. G. Treuting, "Atomic Relationships in the Cubic Twinned State." Trans. AIME (1951) 191, p. 1070; Journal of Metals (October 1951). 4 W. Shockley and W. T. Read: Dislocation Models of Crystal Grain Boundaries. Physical Review (1950) 78, p. 275.
Jan 1, 1953
-
Part IX - Communications - On the Partial Molal Volume of Hydrogen in Alpha IronBy R. A. Oriani
The partial molal volume of hydrogen is one of the parameters that describe the elastic interaction between the solute and the stress fields about inclusions, dislocations, and cracks. As such the partial molal volume is probably of importance in the elucidation of phenomena such as hydrogen embrittlement and hydrogen yield point. A knowledge of this quantity would also be helpful in thinking about the state of dissolved hydrogen in iron. However, because of the very low lattice solubility of hydrogen in iron the usual ways of determining the lattice expansion are not practicable. It is therefore of interest to apply the thermodynamics of stressed bodies to two sets of measurements of the effect of elastic stress upon the permeability of hydrogen in order to deduce a value of the partial molal volume, VH, of hydrogen dissolved in a iron. Beck ..' and previously de Kazinczy, observed that a uniaxial tensile stress increases the permeability of hydrogen in iron and in various steels. Beck et 01. employed Armco iron and A.I.S.I. 4340 steel, whereas de Kazinczy used a steel the composition of which was 0.13 C, 0.23 Si, 0.46 Mn, 0.006 P, and 0.038 S. Upon releasing the stress the permeability increment disappeared if the stress was below the elastic limit. Both investigators employed cathodic charging to introduce the hydrogen. de Kazinczy measured the permeation through a thin-walled tube by collecting the gas, whereas Beck et al. measured the permeation through sheets of various thicknesses by a very sensitive electrochemical technique. Both investigators measured the steady-state permeation at constant rate of hydrogen ion discharge, and Beck measured in addition the hydrogen diffusivity by a time-lag technique which is independent of the boundary conditions. Beck et al. and de Kazinczy found a linear relationship between log (J,/Jo) and the stress, where Ju/Jo is the ratio of the flux of hydrogen when the metal is under uniaxial tensile stress, a, to the flux under zero stress, for the same temperature and charging current. Beck et al. found in addition that the diffusivity of hydrogen is not changed by stress. Both investigators concluded that the observed change in permeability is due to an increase in hydrogen concentration, and furthermore that the increase in concentration is due directly to the thermodynamic effect of stress upon concentration. Accepting this assessment of the situation for reasons given below, one may use the equation3j4 in order to evaluate I/H, the partial molal volume of hydrogen. This equation is valid for the domain of a/E «¦ 1 (where E is the Young's modulus) and under the assumption that hydrogen expands the lattice isotrop-ically. From the data of Beck el al, one calculates V7H - 2.0 cu cm per g-atom, and from those of de Kazinczy one obtains 1.8 cu cm per g-atom. That the increase of concentration with stress is indeed of thermodynamic origin is attested to by the facts that the experimental results conform to the thermodynamic relation, Eq. [I], and that the results are the same whether a pure iron1 or each of two different steels172 is used. Neither of these facts wou1.d necessarily be expected if the effect of stress were, rather, to increase the ratio kn/k, of the kinetic factors of the following competing reactions: H(ads) — H (dissolved) Such a change of kinetics at the surface could be an alternative explanation of the effect of stress on the permeability. Although this writer does not deem this explanation to be the correct one for the reasons given above, it must be admitted that unambiguous proof that the phenomenon has a thermodynamic origin does not yet exist. Two kinds of experiments may be suggested. One is to plate a variety of metals on the input surface of the steel and repeat the stress experiment at a variety of hydrogen charging currents. The other is to employ somewhat thicker specimens in order to be able to apply uniaxial compressive stress. Eq. [I] shows that ln(c,/c,) depends on the sign of the stress, but it is difficult to see a physical basis for which k2/kl would depend on the sign of a. The present value of V^ in a iron agrees with phragmen's5 estimate, which he based on comparisons with the lattice expansion by hydrogen of titanium, zir-
Jan 1, 1967