US soda ash industry - the next decade

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 4
- File Size:
- 700 KB
- Publication Date:
- Jan 10, 1985
Abstract
Introduction Soda ash is known chemically as sodium carbonate, an important inorganic chemical. It has been produced for several centuries by processing certain vegetation and minerals. The US soda ash industry has evolved from several small sodium carbonate mining operations in the West. Now, a nucleus of six companies produce about one-fourth of the world's annual soda ash output US producers currently dominate the world market. But certain international events are occurring that will reshape the domestic soda ash industry in the next decade. Historical perspective Soda ash is used mainly in the manufacture of glass, soap, dyes and pigments, textiles, and other chemical preparations. All of these are the first basic consumer products produced by developing societies. About 3500 BC, the Egyptians became the first society to use crude soda ash. The soda ash was used to make glass containers. It was most likely obtained from dried mineral incrustations around alkaline lakes. Soda deposits were virtually nonexistent in western Europe. So people resorted to burning seaweed to obtain the ashes. The ashes were then leached with hot water and the solute was recovered after evaporating the solution to dryness. The solute, a crude "soda ash" was impure. But, it could be used to make glass and soap. These two products and industries were important to the population and economic growth of the region. About 11.5 t (13 st) of seaweed ash was required to produce about 0.9 t (1 st) of soda ash. Along the coasts of England, France, and Spain, seaweeds with varying alkali contents became important items of commerce and sources of soda ash before the 18th century. The LeBlanc process used salt, sulfuric acid, coal, and limestone. It became the major method of production from about 1823 to 1885. In the early 1860s, Ernest and Alfred Solvay, two Belgian brothers, successfully commercialized an ammonia-soda process to synthesize soda ash. It used salt, coke, limestone, and ammonia. The Solvay process produced a better quality product than the LeBlanc method. In 1879, Oswald J. Heinrich presented to the Baltimore meeting of AIME, a paper entitled "The manufacture of soda by the ammonia process." The paper compared the two processes and foretold the demise of the LeBlanc technique. World production of soda ash in 1880 was 680 kt (750,000 st). Of that, 544 kt (600,000 st) was produced by the LeBlanc process. Of the 2.8 Mt (3.1 million st) of soda ash produced worldwide in 1913, only about 50 kt (55,000 st) was by the LeBlanc method. The LeBlanc process was never used successfully in the US, except for a brief period from July 1884 to January 1885 in Laramie, WY. Previously, soda ash had been produced by burning certain plants, as exemplified by the early Jamestown colonists, or by recovering small quantities of natural sodium carbonate found in alkaline lakes, such as those found near Fallon, NV, and Independence Rock, WY. Before the 1884 startup of the first synthetic soda ash plant in the US at Syracuse, NY, most of the domestic soda ash demand in the East was met by imports, primarily from England. Large-scale commercial production of natural soda ash began in California in 1887 from surface crystalline material at Owens Lake. Production from sodium carbonate-bearing brines at Searles Lake began in 1927 (Fig. 1). In 1938, during exploration for oil and gas in southwestern Wyoming, a massive buried trona deposit, presumably the world's largest, was accidentally discovered. Recent mineral resource evaluation by the US Geological Survey and the US Bureau of Mines indicates that the Wyoming trona deposit contains 86 Gt (93 billion st) of identified trona resource in beds 1.2 m (4 ft) thick or greater. Additionally, there is about 61 Gt (67 billion st) of reserve base trona. Of this 36 Gt (40 billion st) is in halite-free trona beds and 24 Gt (27 billion st) is in mixed trona and halite beds. In 1953, the Food Machinery and Chemical Corp. (later shortened to FMC Corp.) became the first company to mine trona in Wyoming. Soda ash demand increased.
Citation
APA:
(1985) US soda ash industry - the next decadeMLA: US soda ash industry - the next decade. Society for Mining, Metallurgy & Exploration, 1985.