Sunnyside No. 3 - A Case Study In Ventilation Planning

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 12
- File Size:
- 598 KB
- Publication Date:
- Jan 1, 1982
Abstract
Sunnyside Mines, owned and operated by the Kaiser Steel Corporation, are situated near the city of Price, Utah. The complex comprises three adjacent mines, named simply Nos. 1, 2 and 3, all connected underground. Two seams, the upper and lower Sunnyside have been worked. These dip at about 10 percent to the north-east. The surface cover is variable due to the mountainous nature of the topography. The Sunnyside upper seam varies from 5 1/2 ft (1.7m) to 9 ft (2.7m) In thickness whilst the lower seam remains at about 6ft (1.8m). The separation between the two seams has ranged from 7 to 45 ft over the mined area (2 to 14m). Longwall mining has been practiced at Sunnyside for over 20 years due to difficulties of roof control encountered when using the roan and pillar system. Number 3 mine is bounded on the north and south sides by mines Number 1 and 2 respectively. Whilst current production is concentrated into Number 1 mine, much of the future of the complex lies in the further development of deeper reserves in Number 3 mine. Workings in this latter mine were curtailed in 1978 due to difficulties in ventilation. Present developments are ventilated partially from the neighboring Number 2 mine where no workings are in progress. The layout of Number 3 mine is illustrated on the schematic Figure 1. Trunk airways extend down dip from the surface at No. 2 Canyon and the Water Canyon for a distance of some 9,600 ft. (2930m). The area between the two sets of trunk airways has been worked extensively in both seams as have the corresponding reserves on either side in the connected adjacent mines. At the present time exhausting fans are sited at the top of a shallow shaft in No. 2 Canyon and an 8 ft (2.4m) diameter shaft sunk to a depth of 1013 ft (310m) closer to the current developments (Figure 1). The current airflow system, even with an additional 116,000 cfm (55m3/s) entering from No. 2 Mine, is adequate only for the development work now in progress but will be unable to support new longwall faces further downdip. The basic ventilation problem of this mine may be stated quite simply. In a situation where all intake and return airways pass through extensive old workings, a ventilation system design was required that would be effective, efficient and economic for the foreseeable future of the mine. ORGANIZATION OF THE PLANNING PROCEDURE The procedure followed during the study is illustrated on Figure 2. Initial ventilation surveys established the current state of the airflow system and provided the necessary data for setting up a Basic Network File in a computer store. The data in this file was a mathematical model of the ventilation system of the mine. The basic network was analysed by a ventilation network analysis program in order to correlate the measured and computed airflows and to establish the basic network as a true representation of the mine as it stood at the time of the surveys. The network model could then be extended to simulate the future development of the mine and alternative ventilation designs investigated. The remaining sections of the paper outline the work involved in each of these main phases of the planning procedure. VENTILATION SURVEYS Conduct of Surveys Two types of measurements were conducted simultaneously throughout the air-carrying routes of the mine: (i) Airflow measurements were made by anemometer traverse or smoke tube at 221 selected stations. Anemometer traverses were repeated at each station until at least three gave results to within 5 per cent. (ii) Pressure drop measurements were made across ventilation doors, regulators and, wherever possible, across stoppings. Additionally, frictional pressure drops were measured along airways where such pressure drops were significant (above 0.01 inches of water gauge or 2.5 Pa over a 100m distance). The trailing hose method was used to determine these frictional pressure drops. This involved laying out 100m of abrasive resistant plastic tubing (3 mm internal diameter) with a 4 ft. pitot-static tube facing into the airflow at either end and a low range pressure gauge connected into the line. The trailing hose method was preferred to the alternative barometer technique for this study because of (a) the relative ease of access between measuring points and (b) the greater accuracy within individual airways. The anemometers used were Davis Biram Type A/2-3" (30 to 5,000 ft/min) and Airflow Developments AM-5000 digital (50 to 5,000 ft/min). The pressure gauges employed were Dwyer magnehelic instruments. These were preferred to liquid in glass manometers because of their portability and dependability under adverse mining conditions. A checklist of the equipment used in the survey is given in Appendix 1. The instruments were calibrated before and after the surveys in the mine ventilation laboratory at the University of California, Berkeley. The survey occupied two teams, each of three men, for ten working days. The work consisted
Citation
APA:
(1982) Sunnyside No. 3 - A Case Study In Ventilation PlanningMLA: Sunnyside No. 3 - A Case Study In Ventilation Planning. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.