Statistical Evaluation And Discussion Of The Significance Of Naturally-Occurring Radon Exposures

Society for Mining, Metallurgy & Exploration
George H. Milly Scott D. Thayer
Organization:
Society for Mining, Metallurgy & Exploration
Pages:
5
File Size:
351 KB
Publication Date:
Jan 1, 1981

Abstract

INTRODUCTION Ambient concentrations of radon and its daughter products have been measured and analyzed by a number of investigators for a variety of purposes. Principal among these purposes have been: (1) descriptive, to characterize the distribution and changes in concentrations under various conditions; (2) research in the use of radon as a tracer gas in the study of atmospheric characteristics and motions, such as eddy mass transfer, diffusivity profiles, large scale circulations, and the like; and (3) the use of radon as an atmospheric tracer in exploration for uranium deposits.* This information forms the basic data for this paper and for its placing the ambient natural, or non-anthropogenic, radon concentrations into the perspective of ambient radon health standards and lung cancer risk calculations. To enable better understanding of some aspects of the ambient radon data, review and analysis is also performed on selected measurements of radon emanation or flux from the surface of the earth into the atmosphere. These measurements have generally been made for purposes similar to those for ambient radon, i.e., (1) description of radon emanation characteristics; or (2) to support and justify the use of ambient concentration measurements in atmospheric research; or (3) in exploration for uranium. Interest is also developing in the use of such measurements for earthquake prediction. In addition, to complete the perspective, brief examination is given to anthropogenic ambient and flux radon measurements related to the mining and milling of uranium, so that comparison can he made with the values from natural sources. As a frame of reference we cite here previous summaries of studies which have presented representative values and ranges of ambient concentrations and emanation rates. H. Israel, in the Compendium of Meterorology (1951), cites eight studies of ambient radon concentrations which we have selected as representative of non-anomalous continental values. Their means generally range from [0.06 to 0.15 pCi lit-1 with the smallest reported minimum of zero and the largest maximum 0.53 pCi lit-1. The overall mean is 0.10 with a standard deviation of 0.03 pCi lit-1. Means over oceans are much smaller, and the data scarcer, with only three values ranging from 0.0004 to 0.003 pCi lit-1 and a mean of 0.0016 pCi lit-1.] Thirteen studies from Israel's list were selected as representative of mountainous terrain. These data, except for the cases of higher elevations, frequently show significantly higher values than the average cases in non-mountainous terrain described-above. The averages range from 0.10 to 0.59 pCi lit-l; the smallest minimum is zero and the largest maximum is 9.2 pCi lit-1. The overall mean is 0.30 with a standard deviation of 0.17 pCi lit-1. Israel also cites five studies of radon emanation (flux) from the earth's surface. These show a mean of 0.40 pCi-2m-2 sec-1 and a range of from 0.21 to 0.74 pCi m-2 sec-1. Data on flux are naturally scarcer in the literature than data on ambient concentrations, because of the greater interest in and utility of the ambient information. In this paper we also give special consideration to observations of the variability in time and space of radon flux rates, and to the impact of these phenomena on the use of such data for a variety of purposes. NATURAL(NON-ANTHROPOGENIC)AMBIENT RADON CONCENTRATIONS We have examined the following reports for the data selected for this category; these studies were generally intended to describe radon characteristics in the atmosphere. Jonassen and Wilkening (1970); Bradley and Pearson (1970); Wilkening (1970); Lambert, et al (1970); Pearson and Moses (1966); and DickPeddie, et al (1974). Another set of studies which was reviewed was selected because the investigators made ambient radon measurements in the course of examining the use of radon as a tracer in atmospheric research. This set consists of: Israel and Horbert (1970); Carlson and Prospero (1972); Subramanian, et al (1977); Larson (1978); Cohen, et al (1972); Hosler (1966); and Shaffer and Cohen (1972). Finally, unpublished data from uranium exploration activities (Milly and Thayer, 1976) was analyzed. [Treating the ocean cases first, the mean values are generally consistent with those quoted earlier from Israel (0.0004 to 0.003 pCi lit-1); they range from 0.001 to 0.011 pCi lit-1, with 0.003 the most frequently reported value. Continental values, from eight studies, range in means from 0.07 to 0.41 pCi lit-1 (not including mineralized areas, or "uranium country", discussed later), with maxima as high as 2.4 pCi lit -l. For comparison, the means from Israel are 0.06 to 0.15 pCi lit-1, with a maximum of 0.53 pCi lit-1. Some of these studies also present the typical decrease of-1 concentration with height to 0.01 to 0.04 pCi lit at 5 to 7 km. The vast numbers of uranium prospecting radon data of]
Citation

APA: George H. Milly Scott D. Thayer  (1981)  Statistical Evaluation And Discussion Of The Significance Of Naturally-Occurring Radon Exposures

MLA: George H. Milly Scott D. Thayer Statistical Evaluation And Discussion Of The Significance Of Naturally-Occurring Radon Exposures. Society for Mining, Metallurgy & Exploration, 1981.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account