Stability design of slopes in carbonatite complexes characterised by brecciation

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 11
- File Size:
- 5581 KB
- Publication Date:
- Sep 1, 2025
Abstract
Carbonatites are generally competent rock masses with rock mass rating class II rating 60–74.
In spite of their competency, they tend to be affected by weak features like manganese-iron veins
and/or in situ rock damage due to brecciation associated with carbonatite complexes. Rock slope
failure in such hard rocks is complex since such structures within the rock mass form weak links
that could potentially control slope instability. In this contribution, a numerical simulation using phase2 v 7.0 was carried out to investigate the influence of in situ rock damage on the stability of mine pit walls. The outcome reveals that, the existence of breccia in the competent rock mass has the capability to reduce the slope stability performance particularly at gentle
dipping angles of emplacement in close range to the slope toe. However, as the emplacement position of breccia moves away from the pit wall, the stability performance increases at gentle dipping angle <50º. On the contrary, at the dipping angle of 50° the performance of slope reduced, and at steeper angles >50° the impact becomes negligible. Thus, from a series of analyses, mine design in brecciated rock masses, the ratio of 1:5 between the breccia distance
from slope toe and pit depth should be implemented to counter its impact, and if the breccia is within or close to the pit limit, a deliberate effort must be made to mine it out.
Citation
APA:
(2025) Stability design of slopes in carbonatite complexes characterised by brecciationMLA: Stability design of slopes in carbonatite complexes characterised by brecciation. The Southern African Institute of Mining and Metallurgy, 2025.