Secondary Recovery and Pressure Maintenance - Design and Operation of Laboratory Combustion Tubes

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 16
- File Size:
- 4226 KB
- Publication Date:
- Jan 1, 1967
Abstract
Experimental work on the combustion oil recovery process has consisted of both laboratory and field studies. Although field experiments are the ultimate test of any oil recovery process, they are costly, time consuming and difficult to analyze quantitatively. Laboratory combustion tube experiments can be opertzted far more rapidly and cheaply, but are subject to scaling and interpretation problems. This paper points out some important design problems, operational criteria and considerations in2portunt to interpretation of results. An analytical hcut model of movement of a burning front axiully along a cylinder with heat loss through an annular insulation was developed. The result was used to identify steady-state temperatrrre distributions both ahead of and behind the burning front, with and without heat loss. Results indicate potential operating limitations on the minimum burning front rielocity (or air flux) which may be used for any given combustion tube. Results also enable estimating the effective thermal diffusivity and over-all heat loss from experimental data and thickness of the brnning zone. Resu lts of operation of a combustion tube constructed recently verify this preliminary theory in the region immediately ahead of and behind the burning front surprisinRly well. INTRODUCTION Many field and laboratory studies of the forward combustion oil recovery process have been conducted since the early publications of Kuhn and Kochl and Grant and Szasz2 in 1953 and 1954. In view of the complex and costly nature of this type of investigation, it is not surprising that no complete theory of the nature of the forward combustion Drocess is yet available. However, gross effects are understood well enough that reasonable design procedures are available for planning field operations. Nelson and McNeil 3,4 have published two comprehensive papers concerning design procedures. One major consideration in planning field operations is the fuel concentration at the burning front. Fuel concentration controls air requirements — an important cost factor in forward combustion. Although fuel concentration can be estimated from field test results by various methods, results are subject to great uncertainty in view of natural limitations on experimental observations. Nelson and hlcNeil4 recommend that fuel concentration be determined from laboratory combustion tube studies. Fuel concentration is only one of many important factors which can be studied by combustion tube experimentation. An obvious goal of imporrance must be development of a comprehensive theory of the forward combustion process. If a theory of this process can be established which matches controlled laboratory experimentation, it should be possible to apply this theory to field operating conditions with some confidence. Laboratory combustion tube studies have already yielded important information concerning the combustion process. However, details concerning the design, construction and operation of combustion tubes are rare. Combustion tubes used by various investigators vary in size, length and mode of operation. Therefore, one purpose of this paper is to present considerations important to design, construction and operation of a combustion tube. In regard to previous combustion tube studies, attention is called to Refs. 1 through 9. These references describe a wide variety of equipment types and present a great deal of pertinent experimental data. In general, combustion tubes usually consist of thin-walled stainless steel tubes containing an oil sand pack mounted within a pressure jacket. Provisions have often been made to heat the tube ex tern a lly by separately controlled heaters to reduce heat losses. This step usually permits operation at low air fluxes (air rate per square foot burning front surface) similar to those encountered in field operations. Burning is usually conducted from the air inlet end of the tube to the outflow end. The tube orientation used has been vertical or horizontal. For vertical tubes, burning has been conducted vertically downwards. As a result of laboratory studies, many of the
Citation
APA:
(1967) Secondary Recovery and Pressure Maintenance - Design and Operation of Laboratory Combustion TubesMLA: Secondary Recovery and Pressure Maintenance - Design and Operation of Laboratory Combustion Tubes. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.