Reservoir Engineering - Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and Montana

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ralph H. Espach Joseph Fry
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
638 KB
Publication Date:
Jan 1, 1951

Abstract

In the spring of 1943, when it was evident that the Tensleep bandstone in the Elk Basin Field, Wyoming and Montana, held a large reserve of petroleum, Bureau of Mines engineers obtained samples of oil from the bottom of nine wells and analyzed them for such physical characteristics as the volumes. of gas in solution. saturation pressures or bubble points, shrinkage in volume caused by the release of gas from solution, expansion of the oil with decrease in pressure, and other related properties. The composition of the gas in solution in the oil was studied. The pressures and temperatures existing in the reservoir and the productivity characteristics of the oil wells were determined. The data obtained indicate that the oil in the Tensleep Reservoir of the Elk Basin Field has unusually varying physiral characteristics, such as a saturation pressure of 1,250 psia and 490 cu ft of gas in solultion in a barrel of oil at the crest of the structure and a saturation pressure of 530 psia and 134 cu ft of gas in solution in a barrel of oil low on the flanks. The hydrogen sulfide content of the gas in solution in the oil varies from 18 per cent for oil on the crest to 5 per cent for oil low on the flanks of the structure. Of even greater significance is the fact that these and other variable characteristics of the reservoir oil are related to the position of the oil in the structure. Many geologists and petroleum engineers have considered that all the oil in a petroleum reservoir has rather uniform physical characteristics and that equilibrium conditions prevailed in all underground accumulations of oil and gas; that such is not always so is borne out by the results of the study by the writers. INTRODUCTION The Rocky Mountain region is one in which may be found striking examples of the unusual in oil and gas accumulations, as is evident from the following: The high helium content (7.6 per cent) of the gas in the Ouray-Leadville limestone sequence in the Rattlesnake Field, New Mexico, and gases of similar helium content in other fields; 50" to 55' API gravity distillate in solution in carbon dioxide gas and recoverable through retrograde condensation, in the North McCallum Field, Colorado; the occurrence of gas, oil, or both in closely related structures contrary to the usual concepts of gravimetric segregation: the accumulation of gas and/or oil in structures closely related to other structures that apparently are more favorable but do not contain oil or gas accumulations; the high hydrogen sulfide content (as high as 42 per cent) of the gas associated with oil in some fields in the Big Horn Basin, Wyoming; and the wide range of fluid chararteristics found in the Elk Basin reservoir. Elk Basin, an interesting old oil field that has been producing oil from the Frontier formation since 1915, is situated in a highly eroded basin resulting from the erosion of the crest of an anticline and some of the underlying softer shales. The field came back into national prominence during 1943 when it became known that it was the largest single reserve of new oil discovered in the United States that year. The Tensleep sandstone was found to contain oil in November. 1942, when a well drilled to a depth of 4,538 ft (44 ft into the Tensleep sandstone) flowed oil at the rate of 2,500 B/D. By the end of 1949, 137 oil-producing wells and five dry holes had been drilled, and approximately 32 million bbl of oil had been produced. Approximately 6,000 acres may be considered productive of oil in the Tensleep Reservoir, and estimates of the oil that will be produced average 200 million bbl. The Tensleep Reservoir has further interest because it ha-greater closure than any oil field in the Rocky Mountain region; the closure of the Elk Basin anticline is variously estimated at 5.000 to 10,000 ft. of which the top 2.00 ft of the structure contained oil. SUBSURFACE OIL SAMPLING Fig. 1 is a structural map of the Elk Basin Tensleep Reservoir, on which the nine wells used in this study and the numbers correvponding to the well designations hereafter referred to are shown. Wells 1. 2, 3, 4, and 8 were tested and sampled during October and November. 1943. and Wells 5, 6. 7, and 9 during June and July, 1944. An electromagnetic type sampler developed by the Bureau of Mines and described by Grandone and Cook' was used in obtaining the subsurface oil samples. As the wells were tubed nearly to bottom, the sampler was run as far as possible in the tubing hut never below the top perforations. The following procedure was used in testing and sampling the wells: A well was shut in for at least three days, after
Citation

APA: Ralph H. Espach Joseph Fry  (1951)  Reservoir Engineering - Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and Montana

MLA: Ralph H. Espach Joseph Fry Reservoir Engineering - Variable Characteristics of the Oil in the Tensleep Sandstone Reservoir, Elk Basin Field, Wyoming and Montana. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account