Reservoir Engineering – Laboratory Research - Ternary Phase Behavior at High Temperature

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 1741 KB
- Publication Date:
- Jan 1, 1969
Abstract
Some interest has been expressed recently in the application of solvents in conjunction with a thermal drive, such as a steamflood. At least one field project of this type has been reported. This paper makes the first attempt to provide some of the basic information necessary for choosing a solvent for such an application. Results of displacements conducted at elevated temperatures are also discussed. This paper shows that, in the case of alcohol-hydrocarbon-water or brine ternary systems, the system miscibility may increase, decrease, or both increase and decrease within the same system when the temperature increases. The distribution coefficient was consistently found to increase in favor of the oleic phase with an increase in temperature, which is advantageous from the standpoint of oil recovery. Results of solvent displacements in a sandstone core showed that even a relatively small temperature effect in the favorable direction (increase in miscibility and distribution coefficient) can lead to a 50 percent increase in oil recovery. On the other hand, if the system miscibility decreases with the temperature, even though the distribution coefficient increases, the oil recovery at the higher temperature may not increase. INTRODUCTION Miscible displacement has been the subject of many investigations. Miscible-phase solvent flooding, employing solvents such as alcohols that are miscible with both oil and water, has received considerable attention. Investigations conducted by Gatlin and Slobod,l Taber, Kamath and Reed,2 Holm and Csaszar,3 and Farouq Ali and Stah14 have helped in understanding the mechanism of solvent flooding. While the use of alcohols and similar solvents as oil recovery agents is economically unattractive, these solvents nevertheless provide a means of understanding the mechanistic aspects of important miscible-phase oil recovery processes such as the Maraflood process (discussed by Gogarty5). As shown by Taber et a1.,2 the phase behavior of a solvent-oil-water system is of .utmost importance in determining the efficiency of the oil displacement. This paper makes the first attempt to obtain the ternary phase behavior data for nine alcohol-hydrocarbon-water/brine systems at elevated temperatures. Results of core tests at elevated temperatures are also presented which corroborate the effect of temperature on oil recovery, as judged on the basis of phase-behavior data. The use of solvents at elevated temperatures has been suggested earlier by Farouq Ali.6 At least one field test of this type has been reportedO7 With the widespread use of thermal recovery techniques, it is possible in some situations (especially in steamflooding) that the use of a suitable solvent in conjunction with the heat carrier may be economically feasible. This paper attempts to provide some of the basic information needed for judging such feasibility. LOCATION OF THE PLAIT POINT The phase behavior of a typical ternary system consisting of a solvent, hydrocarbon and brine (or water) can be represented by a triangular diagram such as the one shown in Fig. 1 (for temperature TI). Point Pon the binodal curve represents the plait point, being the limit of tie lines such as Y1 Y2 The compositions of the coexisting oleic and aqueous phases are given by points Y2 and Y1, respectively, for any mixture composition along Y1Y2. The characteristics of ternary diagrams have been discussed by Findlay8 and others. Taber et aL3 have shown that the position of the plait point in a particular ternary system plays the decisive role in determining whether or not theoleic phase would be displaced in a continuous manner during an alcohol displacement. The area above the binodal curve also is important, since it represents
Citation
APA:
(1969) Reservoir Engineering – Laboratory Research - Ternary Phase Behavior at High TemperatureMLA: Reservoir Engineering – Laboratory Research - Ternary Phase Behavior at High Temperature. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.