Reservoir Engineering – General - Reservoir Analysis for Pressure Maintenance Operations Based on Complete Segregation of Mobile Fluids

The American Institute of Mining, Metallurgical, and Petroleum Engineers
John C. Martin
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
2388 KB
Publication Date:

Abstract

The discovery of a new gas reservoir demands that the planning of a sottnd well-spacing program be initiated early in the development stage. It is the purpose of this discussion to illustrate by actual field examples the application of basic well-spacing principles, previously developed for oil reservoirs, to the problem of well spacing in natural gas fields. These studies are presented for the field use of geologists and engineers who are concerned with the initial planning of the proper development of the newly discovered gas reservoir. INTRODUCTION The phenomenal growth of a vigorous natural gas industry emphasizes the increasing importance of natural gas as a source of energy, fuel, and raw materials to our nation's economy. Since 1945 marketed production of natural gas for the U. S. has increased 21/2 times to a record high of 10.6 trillion cu ft during 1957. As major participants in the gas industry, we share an added interest to develop and produce our natural gas reserves with constantly improved efficiency. The subject of well spacing is vitally important to the gas industry, for the well itself plays a significant role in the development of the natural gas reservoir and in control of the recovery process. Maximum utilization of wells is an integral part of sound conservation practices. The discovery of a new gas reservoir demands that careful choice of well location and well spacing be made and that the planning of a sound well spacing program be initiated early an the development stage. With the drilling of the first development well, efforts of the geologist and engineer must be directed toward acquisition of adequate technical evidence upon which a firm recommendation for a spacing program may be based. With this technical appraisal as a foundation, operators and state regulatory agencies jointly can go far in providing a framework for sound development of gas fields to achieve a program of conservation that avoids the unnecessary well. WELL-SPACING CONCEPTS Through laboratory and field investigations of the mechanism of the recovery of oil and gas, of fluid behavior, and of effective control of reservoir and well, a crystallization of ideas regarding reservoir behavior has emerged as a well-developed technology. Associated with a better understanding of the fundamental principles underlying reservoir and well behavior has been the growth of concepts concerning the role of wells and their spacing in the development and operation of an oil or gas reservoir. In addition to serving as outlets for the withdrawal of fluids from the reservoir, wells are recognized as having two other important functions: (1) providing access to the reservoir to obtain information concerning the characteristics of the reservoir and its fluids, and (2) serving as a means by which the natural or induced recovery mechanism may be effectively controlled. Beyond a minimum number of wells required to fulfill these two functions, additional wells will not increase recovery. With particular emphasis upon well spacing in oil reservoirs, many studies of the well spacing-recovery relationship have evolved the concept that the ultimate oil recovery is essentially independent of the well spacing.' These fundamental concepts are no different when regarding the role of wells and their spacing in the natural gas reservoir. They are equally applicable to the consideration of well spacing in gas reservoirs. For the gas reservoir, the problem of well spacing then revolves around the question of drainage and the degree or extent to which a well may drain gas from its surrounding reservoir environment. Theoretical and Experimental Work During the past 30 years, theoretical and experimental work carried on to study the physical principles involved in the flow of fluids through porous media has shed light upon the matter of drainage. Fundamental mathematical equations have been derived to describe the mechanism of flow of oil and gas through porous rocks. With the recent advent of high-speed digital computers, attempts have been made with mounting success to develop solutions, employing numerical techniques, to mathematical expressions that describe more rigorously the physical behavior and mechanism involved in the unsteady-state flow of compressible fluids, such as a gas, through porous rock. In 1953, Bruce, Peace-man, Rachford and Ricez published a stable numerical procedure for solving the equation for production of gas at constant rate. The results of these calculations are significant with respect to this matter of drainage, for they indicated (1) that depletion of the gas reservoir resulted in a drop in pressure at the extremity of the
Citation

APA: John C. Martin  Reservoir Engineering – General - Reservoir Analysis for Pressure Maintenance Operations Based on Complete Segregation of Mobile Fluids

MLA: John C. Martin Reservoir Engineering – General - Reservoir Analysis for Pressure Maintenance Operations Based on Complete Segregation of Mobile Fluids. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account