Reservoir Engineering-General - Determining Density Variation of Light Hydrogen Mixtures

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1388 KB
- Publication Date:
Abstract
Many engineering functions such as surface metering work and laboratory compressibility check points involve the use of liquid densities of light hydrocarbon mixtures at various pressures and temperatures. However, at the present time, no simple reliable method exists for determining density variation, particularly if the composition of the liquid is unknown. Consequently, a study was undertaken to develop and present a simple and accurate method of predicting density variation of a light hydrocarbon liquid with pressure and temperature, knowing only the density of the liquid at some condition. The experimental liquid compressibility data from API Project 37 by Sage and Lacey' have been considered to be accurate within 0.5 per cent and cover a wide range of pressure (14.7 to 10,000 psia), temperature (100" to 400°F) and molecular weight (up to 150). From these data, a set of liquid density curves, which relate density to pressure, temperature and molecular weight, was developed. These curves make it possible to predict density variation with pressure and temperature. Compared to extensive laboratory compressibility data on a complex, light hydrocarbon liquid, the use of the liquid density curves resulted in an average error of less than 0.5 per cent. Based on the results of this analysis, it is concluded that the set of liquid density curves developed from the data of Sage and Lacey provides an accurate and simple method for predicting the density variation of light hydrocarbon liquids when the density at some condition is known. These curves should be very helpful in many engineering calculations, particularly in the surface metering of light hydrocarbon liquids. INTRODUCTION Many situations arise in field and engineering laboratory work, such as reservoir engineering studies, check of experimentally determined laboratory data and orifice flow-meter formulas, where liquid density factors at various pressure-temperature conditions are required. Also, the need for accurate light hydrocarbon liquid information has become more important with the advent of miscible-type displacements for secondary recovery purposes in oilfield operations. Several reliable methods are available1 - "or determining the density of liquid hydrocarbons if the composition of the liquid is known. However, there is a definite lack of methods for accurately determining the variation of density when the composition of the liquid is unknown. The purpose of this study is to review the various methods for determining hydrocarbon liquid densities and to develop a simple and reliable method of determining variation in density of light hydrocarbon liquids with pressure and temperature when the compositio~n of the liquid is unknown. METHODS FOR DETERMINING DENSITY OF LIQUIDS OF KNOWN COMPOSITION Sage, Lacey and Hicks' have proposed a method to predict the density of light liquid hydrocarbons by using partial molal volumes. Data are available on experimentally developed partial liquid volumes of hydrocarbons over a rather limited range of temperature, pressure and composition. The partial mold volume method has proved satisfactory for determining the density of some hydrocarbon liquids when the composition is known. Within the range covered in the Sage, Lacey and Hicks1 data, the results agree within about 3 per cent of the experimental values. Hanson mentions the limitation of this method to a composition range of approximately 10 per cent by weight of methane, which will not allow this correction to cover most low molecular weight-light hydrocarbon liquids. Standing and Katz2 studied data on light hydrocarbon-liquid systems containing methane and ethane at high temperature and pressure and have presented a method for determining liquid densities, assuming additive volumes for all components less volatile than ethane and using apparent densities for methane and ethane. The compressibility and thermal-expansion curves used by Standing are based on assumptions that compressibility of a hydrocarbon liquid at temperatures below 300°F is a function of the liquid density at 60°F and that thermal expansion of the liquid is affected little by pressure. The information required to use this technique with an example problem is furnished by Standing.' Hanson eports an average error of - 0.5 per cent using the method of apparent densities in calculating liquid densities of several volatile hydrocarbon mixtures. However, as implied, the apparent density method is not applicable for liquid density calculations when the composition of the liquid is unknown. Watson- as presented a method
Citation
APA:
Reservoir Engineering-General - Determining Density Variation of Light Hydrogen MixturesMLA: Reservoir Engineering-General - Determining Density Variation of Light Hydrogen Mixtures. The American Institute of Mining, Metallurgical, and Petroleum Engineers,