Reservoir Engineering - Estimation of Reserves and Water Drive from Pressure and Production History

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. R. Brownscombe Francis Collins
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
573 KB
Publication Date:
Jan 1, 1949

Abstract

A study has been made of the material balance-fluid flow method of estimating reserves and degree of water drive from pressure and production history data. By considering the effect of random pressure errors it is shown that in a particular example a standard deviation of three and one-half pounds in each of ten pressure survey? permits the determination of the reserves with a standard deviation of 8 per cent and the water drive with a standard deviation of 15 per cent, assuming that certain basic geologic data are correct. It is believed that this method of estimating reserves and water drive is useful and reliable in a number of cases. The method is particularly valuable when reservoir pressure data are accurate within a very few pounds, but may also be applied with less accurate pressure data if a relatively large reservoir pressure decline occurs early in the life of the field, as for example in an under-saturated oil field. INTRODUCTION A knowledge of the magnitude of reserves and degree of water drive present in any newly discovered petroleum reservoir is necessary to early application of proper production practices. A number of investigators have contributed to methods of relating reserves, degree of water drive, and production and pressure history. 1-8 Three types of problems of increasing complexity may be mentioned. If a reservoir is known to have no water drive. and if the ratio of the volume of the reservoir occupied by gas to the volume of the reservoir occupied by oil (which ratio permits fixing the overall compressibility of the reservoir) is known, then only one further extensive reservoir property remains to be determined, namely the magnitude of the reserves. A straightforward application of material balance considerations will permit this determination. The problem becomes very much more difficult if we wish to determine not only the magnitude of the reserves but also the magnitude of water drive, if any, which is present. In principle, a combination of material balance and fluid flow considerations will permit this evaluation. Finally, if neither the magnitude of reserves, the degree of water drive, nor the ratio of oil to gas present in the reservoir is known and it is desired to determine all three of these variables, the problem could in principle be solved by a fluid flow-material balance analysis which determines the overall compressibility of the reservoir at various points in its history. The change in compressibility with pressure would provide a means of determining the ratio of gas to liquid present, since the compressibilities of gas and liquid vary differently with pressure variation. However, in practice this problem is probably so difficult as to defy solution in terms of basic data precision apt to be available.' It is the purpose of this discussion to illustrate the second case, which involves the determination of two unknown variables, single phase reserves and degree of water drive, from pressure and production history and fluid property data, and to study the precision with which these unknowns can be determined in this manner in a particular case. Although an electric analyzer developed by Bruce as used in making the calculations to be described, numerical methods necessary in carrying out the process have been devised and have been applied for this purpose. Schilthuis,' for example, developed a comprehensive equation for the material balance in a reservoir. He combined this with a simplified water drive equation, assuming that the ratio of free gas to oil was fixed by geological data and that a period of constant pressure operation at constant rate of production was available to determine the constant for his water drive equation. On this basis he was able to compute the reserves and predict the future pressure history of the reservoir. Hurst developed a generalized equation permitting the calculation of the water drive by unsteady state expansion from a finite aquifer. He showed in a specific case how the water influx calculated by his equation, using basic geologic and reservoir data to fix the constants, matched the water influx required by material balance considerations. Old3 illustrated the simultaneous use of Schilthuis' material balance equation and Hurst's fluid flow equation for the determination of the magnitude of reserves and a water drive parameter from pressure and production history. He used this method to calculate the future pressure history of the reservoir under assumed operating conditions. As a basis for determining reserves, Old assumed a value for his water drive parameter and calculated a set of values for the reserves, using the initial reservoir pressure and each successive measured pressure. The sum of the absolute values of the deviations of the resulting reserve numbers from their mean value was taken as a criterion of the closeness of fit to the experimental data possible with the water drive parameter assumed. New values of the water drive parameter were then assumed and new sets of the reserves calculated until a set of reserves numbers having a minimum deviation from the average was established. The average value of- the re-
Citation

APA: E. R. Brownscombe Francis Collins  (1949)  Reservoir Engineering - Estimation of Reserves and Water Drive from Pressure and Production History

MLA: E. R. Brownscombe Francis Collins Reservoir Engineering - Estimation of Reserves and Water Drive from Pressure and Production History. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account