Producing - Equipment, Methods and Materials - Short-Term Well Testing to Determine Wellbore Damage

The American Institute of Mining, Metallurgical, and Petroleum Engineers
L. R. Raymond J. L. Hudson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
1648 KB
Publication Date:
Jan 1, 1967

Abstract

This paper proposes a comparatively short-term (8 to 10 hours) well test for detecting and characterizing well-bore damage and for measuring mean formation permeability. The proposed test is made by injecting fluid at constant pressure, recording injection rate as a function of injection time. After one to four hours of injection, the well is shut in and fall-off of bottom-hole pressure is obtained as a function of shut-in time. Formation permeability is estimated by an iterative technique. First, a value of formation permeability is assumed. Then, a plot of the recorded injection rate as a function of dimensionless time is made, using the assumed pertneability value. From the slope of the injection-rate curve. a new value of formation permeability is calculated. If the new value agrees with the original assumed value, the assumption was the correct formation permeability. If the values do not agree, the process is repeated using the new permeability value in the calculation. Convergence is rapid, and a reliable permeability value results. Pressure fall-off data are used to check the result. Graphs of pressure and injection rate us functions of time given in the paper show that changes in permeability of the formation in the neighborhood of the wellbore are disclosed by this technique. Thus, the short-term test can he used to detect formation damage. Also, a rough measure of the radial extent of damage can be inferred, which is helpful in designing stimulation treatments. The mathematical model used for this work was a single-zone, horizontal reservoir with a damaged zone in which permeability decreased continuously as radial distance to the wellbore decreased. This model is more realistic than the usual two-zone, discontinuous permeability model used in published works; calculations indicate the realistic model is valid. Vertical variations in horizontal permeability were studied with this model, and results indicate that the permeability measured by the short-term test is the mean horizontal permeability for the vertical interval tested. The proposed short-term test thus should be useful in detecting and characterizing formation damage and in measuring formation permeability needed in calculating reservoir transmissibility. INTRODUCTION To plan the most efficient production or injection schedule for a well and to design or evaluate the optimal stimu- lation treatment, it is necessary to know the properties of the reservoir adjacent to the well, particularly the reservoir transmissibility and characteristics of a damaged zone, if one exists. Several techniques for determining reservoir transmissi-bility from well tests have been presented in the literature. 1,2,3,4 All these techniques rely on conducting constant-rate well tests that often are difficult to execute. A constant-pressure well test is generally easier to carry Out. and this paper contains the first available method for the analysis of constant-pressure well tests. Determination of wellbore damage from transient well tests has been the subject of several papers."" From these studies it is apparent that information necessary for determination of the characteristics of a damaged zone is available shortly after the transient well test is initiated. Consequently, it may not be necessary to carry out an extensive well test (for example, a pressure build-up test) if the primary purpose of the test is to detect the existence of wellbore damage. All previous studies of well testing to determine wellbore damage have been based on the two-zone perrneability model. In this model the damaged zone has a permeability k,, extending to a radius r,,, and the formation permeability k obtains from r, to the drainage radius r,.. Consequently, there is a discontinuity in permeability at r = r,,. This discontinuity can be eliminated by assuming a continuous variation in permeability through the damaged zone. The effect of this assumption on transient well tests is discussed in following sections of this paper. In addition, all formations have within them vertical permeability variations associated with lithology changes throughout the zone of interest. This paper also considers the effect of these variations on transient well tests. ANALYSIS OF CONSTANT-PRESSURE WELL TESTS The mathematical analysis associated with the injection of fluid at constant wellbore pressure into a single-zone, horizontal reservoir completely filled with a fluid of small and constant compressibility and constant viscosity is given in Appendix A. In this analysis it is assumed that the well is located at the center of an undamaged, circular drainage area. From this analysis, the formation permeability can be obtained as follows. 1, Estimate a value for the formation permeability k. 2. Prepare a plot of injection rate q vs
Citation

APA: L. R. Raymond J. L. Hudson  (1967)  Producing - Equipment, Methods and Materials - Short-Term Well Testing to Determine Wellbore Damage

MLA: L. R. Raymond J. L. Hudson Producing - Equipment, Methods and Materials - Short-Term Well Testing to Determine Wellbore Damage. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account