Pipeline Transportation Of Phosphate

The American Institute of Mining, Metallurgical, and Petroleum Engineers
I. S. Tillotson R. B. Burt James A. Barr
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
873 KB
Publication Date:
Jan 1, 1952

Abstract

THE pumping of solids in water suspension is an important part of many metallurgical and mining operations. In most cases, it is still in the rule of thumb category for which no universal formula has been developed, and much research is needed. Because of the limited and incomplete data available, this article may be classed as an experience paper, which is presented with the hope that some contribution will be made toward the development of the so-called universal formula. This formula, if and when developed, may be evolved from several factors, many of which are not now available for general application. The designing engineer is interested in obtaining accurate forecasts on: 1-the minimum velocities needed to prevent choke-ups in the pipeline, which in turn dictates pipe sizes, 2-power required for pumping, 3-pump selection. The basic factors for a given problem will include: 1-weight per unit of time of solids to be handled, 2-specific gravity of solids, for calculation of volume, friction and power, 3-screen analysis of solids with the colloidal acting, i.e., the slime fraction, a very important factor, 4-shape of particle or some means of determining a friction constant, 5-effects of percentage of solids, 6-development of a viscosity factor to be used in the overall calculations, 7-calculation of the lower limits of pipeline velocities permissible, 8-calculation of total head, pump horsepower, and 9-setting up of pump specifications. In certain limited cases horsepower and total heads and minimum velocities may be computed and a suitable pump selected from basic data, but in many cases, as in mining of Florida pebble, phosphate, experience rather than a hydraulic formula still should be used as a basis of selection. Pumping Florida Pebble Matrix Pumping at the Noralyn mine of International Minerals and Chemical Corp. will be used as an example. Other areas will vary as to the characteristics of the matrix, especially the slime content. A typical screen analysis of this matrix is: +14 mesh, pebble size,* 2.1 pct; -14 +35 mesh, 11.4 pct; -35 +150 mesh, 60.5 pct; -150 mesh, 25.0; total, 100 pct; moisture in bank, 20.0 pct; weight per cu ft in bank, 120 lb. The -150 mesh fraction may increase to as much as 35 pct in adjacent areas. When thoroughly elutriated, the matrix has a relatively slow settling rate, which is an important factor in permitting lower pipeline velocities without choke-ups. Exact data is not available to evaluate settling rates. For a factor of 100 a suspension of clean building sand in water is suggested. When pumping long distances, a quick settling matrix allows the coarser solids to settle out along the bottom of the pipeline, causing drag, turbulence, and increased friction. With a slow settling matrix as at Noralyn, turbulence acts to keep the solids in suspension at a lower friction head, regardless of the pumping distance. When the pebble, content of the matrix, i.e., the +14 mesh fraction, is in excess of 10 pct of the total solids, trouble may be expected from settling out even in normal pumping distances. To prevent choke-ups and maintain tonnage, an additional pump must be added in the long runs, where one pump would otherwise be satisfactory. A typical pulp handled is: total volume, 7800 gpm; water, 4500; solids pumped per hr, 4200 lb; sp gr pulp, 1.4; percent solids in pulp, 46.; pipe size, 16-in. ID; pulp velocity, 12.85 fps; probable critical velocity, 10 fps, as below this minimum -velocity choke-ups would be numerous. In calculating friction heads the Armco handbook is used where a roughness factor based on 15-year-old pipe is set up. Because the pipe used in pumping matrix is, smooth and- polished because of the scouring, action of the phosphate and its silica content, the head losses in the Armco table for water are practically the same as in pumping the Noralyn matrix through smooth pipe, plus the fact that conditions vary widely over short periods, making accurate determinations difficult to obtain. New pumps and pump, changes are being tested continuously and a wealth of data built up. This has resulted in a substantial improvement and lower relative costs in pumping matrix. The Florida phosphate industry is constantly seeking to offset higher wage and material costs with improved technique. Until a few years ago a 12-in. discharge pump was commonly used, with heads as low as 80 ft. Sizes have gradually increased and heads more than doubled. For example, the following pump was placed under test at the Noralyn mine: make, Georgia Iron Works; size, suction 16 in., discharge 14 in.; impeller, 39-in. diam; motor, 600 hp, slip ring; full load speed, 514 rpm. The results were increased head, higher capacity than the older design, with fewer pumps in the line from mine to washer.
Citation

APA: I. S. Tillotson R. B. Burt James A. Barr  (1952)  Pipeline Transportation Of Phosphate

MLA: I. S. Tillotson R. B. Burt James A. Barr Pipeline Transportation Of Phosphate. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account