Part XII - Papers - Characteristics of Beta - Alpha and Alpha - Beta Transformations in Plutonium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. D. Nelson J. C. Shyne
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1828 KB
Publication Date:
Jan 1, 1967

Abstract

The ß and a ß transformations in plutonium were studied with particular emphasis on the transformation kinetics and microstructure. Significant observations are: 1) The kinetic data show conclusively that the ß — a transformation in high-purity plutonium can proceed isothermally with no athermal component. 2) Plastic deformation of the stable (3 phase retards the subsequent (3 — a transformation. 3) Plastic deformation of the stable a phase accelerates the a — ß transformation; the acceleration is attributed only to residual stresses. 4) The a and a?a volume changes occur anisotroPically in textured plutonium. 5) An apparent crystallogvaphic relationship exists between the parent and the product phases of the and (3 — a transformations. 6) Both applied uniaxial compressive stresses and uniaxial tensile stresses raise the starting temperature for the ß — a transformation. 7) A given uniaxial tensile stress favors the a — ß transformation more than an equivalent applied uniaxial compressive stress opposes the transformation. These observations of the (ß —a and a — ß phase changes in plutonium are consistent with known mar-tensitic transformations. ThIS paper elucidates some of the characteristics of the a— ß and ß —a transformations in plutonium. Because considerable conjecture exists about the mechanisms by which the phase transformations occur in plutonium, experiments have been performed to provide indirect information concerning the mechanisms responsible for the a —ß and ß -a transformations. Indirect information is of particular value in the study of plutonium because of the experimental difficulties presented by the metal. Single crystals have not been produced in any of the allotropes. The large density results in high X-ray and electron-absorption factors and consequently complicating X-ray and electron diffraction. The kinetics of ß — a and a — ß transformations of plutonium and the behavior of the transformations under a variety of conditions have been investigated in detail. Information about the mechanisms of the allo-tropic transformations of plutonium was obtained indirectly from three sources: 1) the effect of plastic deformation of the stable parent phase upon the transformation kinetics; 2) the behavior of the metal transforming under applied stresses; and 3) the microstruc-tural and crystallographic features between parent and product phases. PHASE-TRANSFORMATION CHARACTERISTICS In characterizing solid-state phase transformations in metals and alloys, it is useful to define several types of transformations. An aim of the present work was to identify the low-temperature transformations in plutonium by type, i.e., as martensitic or nonmar-tensitic. Practical definitions for these terms follow. The terms commonly used to categorize phase transformations lack universally accepted definitions. This confusion arises doubtlessly because some terms specify crystallographic or morphological character while other words have a kinetic or a thermodynamic connotation. For example, martensitic specifies certain definite crystallographic restrictions. Unfortunately, martensitic is sometimes used in an ill-defined way to imply kinetic characteristics. Further confusion attends the use of such expressions as nucleation and growth, diffusional, and massive. From time to time new systems of phase-transformation nomenclature are suggested; unfortunately none of these has gained general acceptance.1,2 The authors of the present paper have no intention of entering the controversy. We recognize that some readers may object to the nomencliture used here. For exampie, the terms military and civilian have recently been used in much the same way as martensitic and non-martensitic are used in this paper. This paper is intended to describe several specific details of the low-temperature phase transformations in plutonium. The authors have found it useful to identify these transformations as martensitic; the term was chosen as the best available to describe the experimentally observed features of the transformations studied. A martensitic transformation is one that occurs by the cooperative movement of many atoms; the rearrangement of atoms from parent to product crystal structure occurs by the passage of a mobile semico-herent growth interface. The geometric features characteristic of a martensitic transformation are a specific orientation relationship between the product and parent phase lattices, a specific habit-plane orientation for the growth interface, and a shape change with a specifically oriented shear component. There is no alloy partition between the parent and product phases in a martensitic transformation. Martensitic transformations may display either athermal kinetic behavior or thermally activated isothermal kinetic behavior. Some martensitic transformations occur isothermally, although more commonly martensitic transformations are athermal. Isothermal martensitic transformations are suppressible by rapid cooling. In athermal martensitic transformations, nucleation and growth are not thermally activated and the transformations are essentially time-independent. Nucleation, growth, or both can be thermally activated in isothermal martensitic reactions. Transformation of the parent phase into a marten-
Citation

APA: R. D. Nelson J. C. Shyne  (1967)  Part XII - Papers - Characteristics of Beta - Alpha and Alpha - Beta Transformations in Plutonium

MLA: R. D. Nelson J. C. Shyne Part XII - Papers - Characteristics of Beta - Alpha and Alpha - Beta Transformations in Plutonium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account