Part XII – December 1968 – Papers - Phase Transformations in Ti-Mo and Ti-V Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 1582 KB
- Publication Date:
- Jan 1, 1969
Abstract
Several of the decomposition processes that can occur in supersaturated phases in a Ti:11.6 wt pct Mo and a Ti:20 wt pct V alloy have been studied by transmission electron microscopy. The deformation induced "marternsitic phase" in the Ti:Mo alloy has been found to have a bcc or bct structure rather than the previously reported hexagonal structure. The morphology of' the transformed region is a rather complex asserrlblage of twins, twinning occurring in one or more systems; this internal twinning has been found to occur on (112). The w phase is formed in both alloys on aging and is present in the Ti:Mo alloy after quenching. The structure of this phase has been confirmed as hexagonal in both systems, however, differences in morphology and stability are found between the two alloys. Thus in the Ti-Mo alloy the w phase has an ellipsoidal morphology with the major axis lying parallel to <111>ß or [0001]w while in the Ti-V alloy the phase forms as cubes, the cube faces lying parallel to {100}ß or {2021}w Some observations on the particle sizes, volume fraction, and composition of the w phase in the Ti-Mo alloy are listed. The mode of formation of The a phase from the (ß + w) structures is also different in the two alloys. In the Ti-Mo alloy the a phase is formed by either a cellular reaction or by the growth of isolated needles, whereas in the Ti-V alloy the a phase is nucleated at an w:ß interface and grow to consume the w phase. Some of the difjerences in behavior of the w phase are attributed to the mismatch between it and the solute enriched ß matrix in which it forms. MaNY transition elements tend to stabilize the bcc or ß-phase when added to titanium. In general two types of phase diagrams are produced, either a ß-stabilized (ß-isomorphous) system, e.g., Ti:Mo, -Ti:V, Ti:Nb, or a ß-eutectoid system, e.g., Ti:Cr, Ti:Fe, Ti:Mn. In previous papers'-4 the phase transformations in the a-phase and (a + ß)-phase alloys have been described and this work has been extended to ß-stabilized systems. Specifically, transformations in the alloys Ti:20 wt pct V and Ti:11.6 wt pct Mo have been studied; in both of these alloys the ß phase is retained at room temperature when quenched from the ß-phase field. A number of phase transformations can occur in such metastable ß phases and the two alloys were chosen to include most of the transformations reported for ß-stabilized systems. We list these possible phase transformations below. Ti:11.6 Mo quenched from >780°C to retain the ß phase: a) The w phase can form on quenching.5 b) Martensite can be produced by subzero cooling or deformation. Two martensite habit planes have been reported in Ti:Mo alloys; (334)ß and (344)ß=6 c) On aging at temperatures <-550° C the w phase is formed before the a-phase.5,7 d) On aging at temperatures >550°C the a phase is formed.7 e) The martensite can be tempered. It has been reported that the a phase rather than the ß phase is precipitated during tempering.' Ti:20V quenched from >660°C to retain the ß phase:9 a) At aging temperatures <260°C separation into two bcc phases occurs. b) The w-phase is produced prior to the a phase on aging at temperatures <-400°C. c) At temperatures 2400°C the a phase is formed directly. T-T-T diagrams describing the temperature and time regimes for the formation of these phases have been published7,9 for a Ti:12 pct Mo and a Ti:20 pct V alloy. We have attempted to investigate these transformations using transmission electron microscopy, however thin foils undergo a spontaneous transformation in all conditions except the equilibrium (a + ß) structure. This transformation has been reported previ0usly10,11 and we will comment on its morphology and nature in the various sections of experimental results. EXPERIMENTAL The compositions in wt pct of the two alloys investigated were: Ti:11.6 Mo, 0.100 02, 0.006 N2, 0.0015 H2 Ti:20V, 0.0574 O2, 0.0111 N2, 0.005 H2 These alloys were cold-rolled to 0.020 in. thick sheet. Specimens were heat treated in vacuum or in inert gas at temperatures >500°C and in a circulating air furnace at temperatures <500°C. Thin foils were prepared using standard techniques, described in detail previously." Dark field micrographs were obtained using high resolution technique. RESULTS Martensitic Transformation in Ti:11.6 pct Mo. Detailed study of the deformation induced martensite is not possible due to a spontaneous transformation which occurs near the edge of thin foils as shown in Fig. 1. Similar transformations have been observed in iron-" and copper-base13 alloys as well as other titanium alloys, but some observations specific to the Ti:1l.6 Mo alloy are listed below. a) The boundaries of these transformed regions are glissile and move under the influence of the electron beam during examination. b) Selected area diffraction indicates the transformed regions have the same structure as the matrix, being separated by tilt boundaries. The misori-
Citation
APA:
(1969) Part XII – December 1968 – Papers - Phase Transformations in Ti-Mo and Ti-V AlloysMLA: Part XII – December 1968 – Papers - Phase Transformations in Ti-Mo and Ti-V Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.