Part XII – December 1968 – Papers - Deformation Behavior in the Near-Equiatomic Ni-Ti Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 575 KB
- Publication Date:
- Jan 1, 1969
Abstract
A detailed compressive stress-strain analysis and transmission electron microscopy investigation has been made of the deformation behavior occurring in a 50 at. pct Ni-Ti (hypoeutectoid) alloy and a 54.5 at. pct Ni-Ti (hypereutectoid) alloy. In the case of the hypoeutectoid alloy, three stages of work hardening are observed. Stage I occurs at a very low stress and is associated with plastic deformation via martensite formation. Stage 11 is characterized by very rapid work hardening and is due to difficulties in causing further deformation in the fine martensite aggregate produced in Stage I. Stage III which occurs at very high stress levels is characterized by smaller work hardening rates and is due to the plastic deformation arising from alternate reconversions of the original martensites to martensites of varying orientation. Rapid quenching of the hypereutectoid alloy leads to very high yield strengths and is related to a fine precipitate dispersion that such treatment brings about. The present investigation represents the final phase of a three-part study directed toward an understanding of the solid-state transformations in near equi-atomic Ni-Ti alloys as well as the deformation mechanisms associated with these alloys. In the first part,"2 to be henceforth referred to as I, it was found that alternate simple shears on {112} planes and in (111) directions convert the parent B2 structure in the equiatomic NiTi alloy into two distinct close-packed monoclinic martensites. All of the marten-sites were of this type, whether they were formed by cooling or by plastic deformation, whether induced to form in bulk samples or in thin foils, or whether examined in the electron microscope at room temperature or below. On the other hand, in the second part of this investigation,3 to be reffered to as 11, it was shown that upon slow cooling to about 640°C. alloys in the neighborhood of NiTi which possess the B2 structure transform eutectoidally into their equilibrium phases Ti2Ni and TiNi3. However, preceding the formation of these equilibrium phases a series of metastable intermediate phases are formed. This paper will set as its goal the elucidation of the remarkable deformation behavior exhibited by NiTi. In particular, Buehler and Wiley4 have found equiatomic NiTi to be surprisingly soft, while Buehler et al.5 have shown this alloy to possess a memory effect: i.e., upon bending at room temperature it will revert to its original shape when heated to above about 50°C. In I it was shown that NiTi was soft in the sense that the yield stress was low; nevertheless, the alloy work-hardened at an extremely rapid rate to very high stress levels. On the other hand, the hypereutectoid alloys with somewhat higher nickel, say 54.5 at. pct (60 wt pct) have enormously increased yield strengths compared to those of the equiatomic alloys. In order to determine the atomistic processes giving rise to the above behavior, it was decided to examine samples that were wafered from bulk specimens deformed in compression to various strains using the techniques of transmission electron microscopy. EXPERIMENTAL TECHNIQUE All of the alloys used in the present investigation contained either 50 at. pct Ni (55.06 wt pct) or 54.5 at. pct Ni (60 wt pct) and were arc-melted in the form of a finger using the same techniques described in I and II. The finger was capsulated in a stainless-steel jacket and swaged at 850°C into rods. Compression specimens 0.300 in, long and 0.200 in. in diam were machined from these rods. In order to completely re-crystallize the samples and remove residual stresses, all of them were capsulated in evacuated quartz, annealed for 1/2 at 1050°C. and then furnace-cooled. Compression tests were carried out in an Instron tensile testing machine covering a range of temperatures from —196° to 200°C using procedures described previously.6'7 In all cases crosshead speed was 0.02 in. per min. Wafers 0.015 in. thick were spark-cut from the cylindrical samples at 45 deg to the compression axes after they had been deformed to the desired strain. These specimens were then spark-planed to about 0.005 in. and then electrochemically thinned for examination by transmission electron microscopy as described in I.
Citation
APA:
(1969) Part XII – December 1968 – Papers - Deformation Behavior in the Near-Equiatomic Ni-Ti AlloysMLA: Part XII – December 1968 – Papers - Deformation Behavior in the Near-Equiatomic Ni-Ti Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.