Part XII – December 1968 – Papers - Controlled Microstructures of Al-Cu AI2 Eutectic Composites and Their Compressive Properties

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 12
- File Size:
- 1232 KB
- Publication Date:
- Jan 1, 1969
Abstract
An equation governing the concept of constitutional supercooling under the combined effect of concentration and temperature gradients was used to produce platelike Al-CuAl2 eutectic composites for mechanical properties studies. Compression specimens were prepared from a single-colony Al-CuA12 eutectic composite ingot, 2 in. in diam and 12 in. long. The specirrzens were cut such that the platelets were oriented parallel, 45 deg, and perpendicular to the compression direction. Since the ingot was of eutectic composition, The aluminum-rich matrix could dissolve 5. 7 wt pct Cu in solid solution, and therefore could be strengthened by precipitation hardening. Specimens were tested at room temperature and elevated temperatures in the unidirectionally solidified, solution-treated, and solution-treated plus aged conditions. The results were compared with those for the conventionally cast and extruded specimens. For the controlled material, the highest strengths were obtained with platelets oriented parallel to the compression axis. In the unidirectionally solidified condition, 0.2 pct offset yield strength was 32,000 psi; however, this was increased to 59,000 psi by solution treatment, and further increased to 90,500 psi by solution treatment and aging. The attainment of high compressive strengths in the Al-CuAl2 eutectic composites was interpreted in terms of the buckling of elastic CuAl2 platelets in the plastically deformed a aluminum matrix. SINCE the discovery of high-strength whiskers,' scientists and engineers have made significant progress toward incorporating these whiskers into metallic matrices, forming composites for basic studies and structural application. The general procedure is to produce the whiskers first and then to bind them together with a ductile matrix. The production of whisker-reinforced composites requires tedious handling techniques,, particularly when it is desired to align the whiskers unidirectionally. Furthermore, the interfacial bond between the whisker and the matrix is frequently poor3 so that the resulting composite has strengths lower than expected. These disadvantages are generally true for any metallic composite produced by physically mixing the components. It is possible to eliminate these shortcomings by growing whiskers directly in the matrix material by eutectic solidification.4-8 In eutectic solidification, the matrix phase and a whisker phase are grown approximately simultaneously from a liquid of the same overall composition at the eutectic temperature. If the solidification process is controlled by varying the freezing rate, the temperature gradient, and the impurity content, platelike or filamentlike whiskers are produced parallel to the growth direction. The morphology of the grown-in reinforcement, i.e.. plates or rods, generally depends on the volume fraction9 of the dispersed phase present in the eutectic mixture. Since the unidirectional eutectic solidification is a one-step process, i.e., the liquid-solid transformation process, an excellent interfacial bond between the matrix and whisker is obtained. An additional advantage is that no special handling technique for whiskers is needed. In recent years, many investigators10-13 have studied the effects of growth variables on the micromorpholo-gies of binary eutectic alloys produced by controlled solidification. The study of their mechanical properties was initiated by Kraft and coworkers14-16 who found that the strength of cast A1-CuA12 eutectic alloy can be increased threefold by unidirectional solidification. In the A1-AL3Ni system, a strength of 50,000 lb per sq in, was reported for the unidirectionally solidified eutectic alloy, a value five times higher than for conventionally cast material. Thus, the unidirectionally solidified eutectics can be used as fiber-reinforced composite materials. In this paper, we shall first use an equation17 as a guide for the production of eutectic composites in general and the Al-33 wt pct Cu eutectic in particular. Experimental data supporting the theoretical prediction are given. Second, the compressive properties of the grown A1-33 wt pct Cu eutectic were thoroughly investigated in terms of platelet orientations, thermo-mechanical treatment, and temperature. The experimental data are interpreted in terms of a buckling model of fibers in elastic fiber-plastic matrix metallic composites. EXPERIMENTAL PROCEDURE Crystal Growth. The following experimental procedure was adopted for the production of controlled microstructures in the A1-33 wt pct Cu eutectic alloy. The controlled solidification was accomplished with a movable resistance-wound radiation furnace. Fig. 1 is a schematic drawing of the solidification apparatus. A water-cooled chiller was placed into a degassed high-purity graphite crucible containing the charge. Rubber stoppers wrapped with aluminum foil were used to seal both ends of the quartz tube through which a dried argon atmosphere was passed under a slight positive pressure. At both ends of the quartz tube, radiation shields were used to minimize heat loss. The quartz tube was held in place by two steel clamps and the furnace was drawn vertically by means of a steel cable against the steel truss which permits the furnace to move without touching the tube. The drive mechanism consisted of two pulleys, a counter weight.
Citation
APA:
(1969) Part XII – December 1968 – Papers - Controlled Microstructures of Al-Cu AI2 Eutectic Composites and Their Compressive PropertiesMLA: Part XII – December 1968 – Papers - Controlled Microstructures of Al-Cu AI2 Eutectic Composites and Their Compressive Properties. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.