Part XI - Papers - X-Ray Diffraction Study of the Perfection of Niobium (Columbium) Single Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 2059 KB
- Publication Date:
- Jan 1, 1967
Abstract
A study was made of the effect of the growth conditions on the perfection of single crystals of niobium (columbium). Dislocation densities, determined by means of double-crystal diffractometer measurements , were not greatly affected by the method of crystal preparation but could be reduced by annealing treatments. However, the size, sharpness, and tilt angles of the substructures, observed with X-ray reflection macrograph, were sensitive to variations in growth procedures as well as to subsequent thermal treatments. Although the dislocation density was the same in both types, there were more low-angle bound-aries in crystals grown by zone melting than in those prepared by strain anneal. Mechanisms to account for these observations are discussed in terms of dislocation movements. A planned study of the structure-sensitive properties of refractory metals required the use of single crystals of a high degree of structural perfection and, for ease of handling, of large cross section. It appeared that the strain-anneal technique could satisfy both of these requirements. First, crystals grown in the solid state have been reported to be more perfect than those obtained from the melt.' Second, the diameters of rods which may be produced by zone melting should have a theoretical limit determined by specific gravity, thermal conductivity, and surface tension, while the diameter of strain-annealed rods is limited only by practical considerations. Previously it was shown that niobium (columbium) single crystals of 1 in. diam2 may be grown by strain anneal, compared to the 0.5 in. maximum diameter achieved by zone melting, as reported for molybdenum by Belk.3 The current research was undertaken to investigate and optimize the effect of various process variables on the perfection of 1/4 and 1/2-in.-diam niobium single crystals grown by strain annealing and to compare their perfection to those grown by zone melting. Characterization of these crystals was more conveniently accomplished by means of X-ray than by metallo-graphic techniques. EXPERIMENTAL PROCEDURE Specimen Preparation. Zone-melted crystals of 1/4 in. diam were produced by the standard electron-beam zone-melting technique. The swaged and cleaned rods were outgassed, in the solid state at a temperature near its melting point, at a rate of 12 in. per hr, and single crystals were grown by making two molten passes at 2 in. per hr. By maintaining a zone length of 4 to % in., very uniform single crystals several inches long were obtained. For the strain-annealed crystals, an induction heater was used, in preference to other types of heating, to take advantage of the good penetration of large sections. A five-turn coil, 1 in. long, operating at 10 kc and powered by a motor generator, was contained in a vacuum chamber. The rod, suspended from the upper end, was raised through the coil for both recrystallization and crystal growth. In preliminary work single crystals of the same material were also grown with single and multiturn coils powered by a 450-kc generator. A vacuum of 2 X 10-6 Torr was maintained at temperatures up to 2400°C. Starting with electron-beam-melted ingots of 21/2 in. diam, the analysis for which is given in Table I, the material was cold-swaged to the desired cross section of 1/4 and 1/2 in. diam and then recrystallized. The rods were then strained in a tensile machine and converted to single crystals by passing through the induction coil. As with zone melting, control of orientation is possible by the use of special procedures. Other investigators, see for example Williamson and smallman,4 have reported that orientation control may be achieved by a bending technique. In the present work the strained rod is partially lowered through the coil to start the growth of the crystal. Then it is removed and bent at a point in the poly crystalline portion. Finally, it is returned to the chamber and growth is continued "around the corner". This procedure has certain limitations. If the bending operation exceeds the critical strain, recrystallization may take place. Also, the amount of bending which can be imparted to the rod is limited by coil geometry, and up to now has been 10 deg. However, by repeating the bending and growing operations it should be possible to attain any desired orientation. In preparation for X-ray examination, single crystals were sectioned and planed by means of the spark-erosion technique. To obtain the maximum reflected intensity, the (110) plane was exposed for examination. They were then etched 3 to 5 min in a mixture of con-
Citation
APA:
(1967) Part XI - Papers - X-Ray Diffraction Study of the Perfection of Niobium (Columbium) Single CrystalsMLA: Part XI - Papers - X-Ray Diffraction Study of the Perfection of Niobium (Columbium) Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.