Part XI – November 1968 - Papers - Stress-Enhanced Growth of Ag3 Sb in Silver-Antimony Couples

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. K. Behera L. C. Brown
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
333 KB
Publication Date:
Jan 1, 1969

Abstract

The diffusion rate in Ag-Sb couples is sensitive to con~pressive load with the width of Ag3Sb, the only phase present in the diffusion zone, increasing with stress up to 800 psi and remaining constant above this. Kirkendall marker experiments show silver to diffuse much faster than antimony in Ag3Sb and incipient porosity may therefore develop at the Ag/Ag3Sb interfnce restricting the transfer of atoms from the silver into the diflusion zone. Application of compressive stress reduces the tendency for porosity to develop and so increases the growth rate. In a recent paper Brown et al.1 observed a significant increase in the thickness of Cu2Te in Cu-Te diffusion couples on application of a compressive stress as low as 20 psi. Similar stress effects have also been observed in the Fe-A1,2 Al-u,3 arid cu-sb4,5 systems. It has been suggested that the increase in growth rates of intermetallic phases in these systems is due to a decrease in the amount of Kirkendall porosity with applied stress. In the present paper, results are presented of the effect of compressive stress on diffusion in Ag-Sb, together with a detailed examination of the Kirkendall effect. The Ag-Sb phase diagram6 shows that antimony has a moderate degree of solid solubility in silver, 5.7 at. pct at 350°C, but that there is essentially no solubility of silver in antimony. There are two intermediate phases— (hcp7) from 8.8 to 15.7 at. pct Sb and Ag3Sb (orthorhombic8) from 21.8 to 25.9 at. pct Sb. EXPERIMENTAL Diffusion couples were prepared from fine silver of 99.95 pct purity and from antimony of 99.7 pct purity. Both the silver and antimony were produced in the form of discs 1/2 in. in diam by approximately $ in. thick, with surfaces ground flat to 3/0 emery paper. Diffusion anneals were carried out in the apparatus previously described.1 A compressive load was applied to the diffusion couple through a lever arm system, with a reproducibility estimated to be ±10 psi. All runs were carried out in a protective hydrogen atmosphere. Following the diffusion anneal specimens were sectioned and polished and the width of the diffusion zone was measured metallographically. Composition profiles were measured using an electrostatically focused electron probe with a spot size of 10 , counting on Sb L radiation. Corrections for matrix absorptiori and fluorescent enhancement9 were not required. S. K. BEHERA, formerly Graducate Student, Department of Metallurgy, University of British Columbia, is now Postdoctoral Fellow, Whiteshell Nuclear Laboratories, Atomic Energy of Canada Ltd., Pinawa, Manitoba. L. C. BROWN, Junior Member AIME, is Associate Professor, Department of Metallurgy, University of British Columbia, Vancouver, B.C., Canada. Manuscript submitted June 14, 1968. IMD RESULTS Fig. 1 shows an electron probe traverse of a typical diffusion zone. In all couples examined only one intermediate phase was observed and the composition of this phase, 23 wt pct Sb, was in good agreement with the composition of Ag3Sb, 23 to 28 wt pct Sb. The presence of this phase was confirmed by X-ray diffraction of filings taken from the diffusion zone. The probe traverses showed no detectable solid solubility in either the silver or the antimony although the phase diagram indicates that some antimony, up to 6.5 wt pct pct Sb, should be in solid solution in the silver. However the width of this portion of the diffusion zone would be expected to be very small in view of the low diffusion coefficient in the silver, 4 x 10-l6 sq cm per sec at 350°C, 10 compared with that in the Ag,Sb, estimated as 3 x 10-8 sq cm per sec in the present work, and this region would therefore not be expected to be seen in the probe traverse. Application of stress resulted in a significant increase in the width of the diffusion zone, Fig. 2. At 350°C, the thickness of Ag3Sb increased from 250 at 0 psi to 400 p at the limiting stress of 800 psi, indicating an apparent 150 pct increase in the diffusion coefficient. Similar behavior was also observed at 400°C, indicating that the stress effect is not characteristic of just one temperature. The growth of Ag3Sb at 350°C and at various stresses is shown in Fig. 3. In every case the growth rate was parabolic indicating diffusion control. The kinetic curves all passed through the origin showing that delayed nucleation of Ag3Sb was not responsible for the stress effect and that it was a real growth effect. A series of tests were carried out in which diffusion was allowed to take place at a lower stress following an initial high stress diffusion anneal. Speci-
Citation

APA: S. K. Behera L. C. Brown  (1969)  Part XI – November 1968 - Papers - Stress-Enhanced Growth of Ag3 Sb in Silver-Antimony Couples

MLA: S. K. Behera L. C. Brown Part XI – November 1968 - Papers - Stress-Enhanced Growth of Ag3 Sb in Silver-Antimony Couples. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account