Part XI – November 1968 - Papers - Phase Diagrams and Thermodynamic Properties of the Mg-Si and Mg-Ge Systems

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. Geffken E. Mille
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
382 KB
Publication Date:
Jan 1, 1969

Abstract

The Mg-Si and Mg-Ge phase diagrams were rede-levtnined by thermal analysis, and the existence of a single congruent melting compound in each system was confirmed. The melting points of the two compounds Mg2Ge and ,Wg2Si were found to be 1117.4° and 1085.0°C respectively. The euteclics for the Mg-Ge system occur at 635.6°C (1.15 at. pcl Ge) and 696. 7°C (64.3 at. pct Ge); for the Mg-Si system the eutectics are at 6376°C (1.16 at. pct Si) and 945.6°C (53.0 al. pcl Si). The phase diagrams and known thermodynamic data were used to calculate activity values for both systems. The activities calculated for the Mg-Ge system agreed very well with those previously published. Partial molar enthalpy values for the Mg-Si systetn were calculated from the phase diagram for the composition region where no experimental values have been reported. THE phase diagram for any system is an important source of thermodynamic data. Steiner, Miller, and Komarek1 have derived equations which permit calculation of the activity in binary systems with an inter-metallic compound! if the liquidus and enthalpy data are known. The thermodynamic properties of the Mg-Ge and Mg-Si systems have recently been determined in this by by an isopiestic method, and it was considered that it would be interesting to compare these directly determined values with those computed from the phase diagram. The basic features of the Mg-Ge and Mg-Si systems are essentially similar. The one intermediate compound present in each system. Mg2X, crystallizes in the antifluorite structure and melts congruently. Raynor4 has accurately determined the temperature and composition of the magnesium-rich eutectic in both the Mg-Ge and Mg-Si systems. Klemm and West-linning5 investigated the entire Mg-Ge liquidus, employing sintered alumina crucibles; the purity of the magnesium and germanium starting materials was not reported. The melt was not stirred, and the temperature was automatically recorded to an accuracy of ±3°C. The authors reported large weight changes due to magnesium evaporation between 50 and 67 at. pct Mg. The Mg-Si system has been studied by a number of investigators, and the results have been compiled by Hansen and Anderko.6 Significant discrepancies exist between the two principle investigations of voge17 and Wohler and Schliephake.8 Two different grades of silicon were used by Vogel, one of 99.2 pct purity and the other quite impure, containing 6 pct Fe and 1.7 pct Al. The magnesium purity was not specified. The melts were contained in graphite crucibles with porcelain thermocouple protection tubes under an atmosphere of hydrogen. Samples weighing 10 g were rapidly heated to 50° to 100°C above the liquidus: held, and then rapidly cooled without stirring. Accuracy was ±1 at. pct which is equivalent to a maximum error in temperature of ±18°C. Wohler and Schliephake used 97.9 pct Mg and 99.48 pct Si. The graphite crucibles contained a stirrer and the 15-g samples were melted under an atmosphere of streaming hydrogen. The samples were chemically analyzed after each run. Because of the scarcity of the data, the impurity of the starting materials, and the resultant uncertainty and inconsistency in the published liquidus values, it was decided to undertake a reevaluation of the Mg-Ge and Mg-Si phase diagrams by thermal analysis. EXPERIMENTAL PROCEDURE Alloys were prepared from 99.99+ pct Mg (Dominion Magnesium Ltd.) with impurities in ppm: 20 Al, 30 Zn, 10 Si, <1 Ni, <1 Cu. <10 Fe; 99.999 pct Ge (United Mineral and Chemical Corp.), and 99.999 pct Si (Wacker Chemie Corp.). All graphite parts were machined from high-density (1.89 g per cu cm) G-grade graphite obtained from Basic Carbon Corp. with a total ash content of 0.04 pct. Boron nitride parts were machined from rods of National-grade H.B.N. boron nitride. All graphite and boron nitride pieces were baked out under running vacuum at 1100°C for 24 hr before us Cylindrical graphite crucibles (1; in. OD, 23/4 in. long, l3/8 in. ID) were tightly closed with threaded graphite covers which had 21/4-in.-long thermocouple wells and 1/4-in.-diam off-center holes for stirrers. The cover and thermocouple well were machined from a single piece of graphite. A stirrer was made from a flat cylindrical graphite plate perforated with five 3/16-in.-diam holes and a 1/2-in.-diam central hole, and was held parallel to the crucible bottom by a 1/4-in.-diam. 4-in.-long graphite rod which screwed into the plate and extended up through a tightly fitting hole in the crucible cover. An iron core enclosed in a glass capsule was attached to the stirrer with an 18-in.-long molybdenum wire, so that the stirrer could be magnetically raised and lowered from outside the system. One crucible and stirrer with essentially the same dimensions given above was made entirely of boron nitride. Chunks of magnesium were premelted, cast into 11/2-in.-diam. rods, and then cut into lengths varying from a to 1 in. A 5/16-in. hole was drilled through the center of each piece to accommodate the thermocouple well and the individual pieces were then cleaned and rinsed with acetone. The total weight of an alloy was 50 to 70 g in the Mg-Ge system and 40 to 60 g in the Mg-Si system. The pure components were weighed to an accuracy
Citation

APA: R. Geffken E. Mille  (1969)  Part XI – November 1968 - Papers - Phase Diagrams and Thermodynamic Properties of the Mg-Si and Mg-Ge Systems

MLA: R. Geffken E. Mille Part XI – November 1968 - Papers - Phase Diagrams and Thermodynamic Properties of the Mg-Si and Mg-Ge Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account