PART XI – November 1967 - Papers - Effect of Purity on the Dislocation Density and Strength of Silver Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 2055 KB
- Publication Date:
- Jan 1, 1968
Abstract
The objective of the research is to determine whether solid-solution strengthening effects observed in dilute solutions of silver can be accounted for by the influence of the solute addition on the dislocation structure oj- the crystals. The additions of both tin and indium produced only small changes in the dislocation densities and arrangements in silver crystals. However, as found previously, small solute additions have large effects on the tensile properties; the inj-luence of the tin and indium additions on the temperature dependence of the flow stress and the easy-glide range is especially strong; It is concluded that the indirect strengthening effect of the solute due to variations in the dislocation density as proposed by Seeger is of minor importance and that solute atom-dislocation interactions are responsible for the observed strengthenirzg effects. The experimental results were combined with those of Rogausch to test the concenlvatiorz dependence of solute strengthening. Both the first and one-half power dependences of the critical resoleed shear stress on concentratiorz fail in very dilute solutions. THE objective of the research is to determine whether solid-solution strengthening effects observed in dilute solutions of silver can be accounted for, at least in part, by the influence of the solute addition on the dislocation structure of the crystals. It is recognized that the addition of solute atoms may influence the strength properties of a metal through both "direct" and "indirect" effects. The former refer to the strengthening mechanisms that result from the interaction of solute atoms with dislocations; in the latter case, the strengthening effects arise as a result of solute's influence on quantities such as dislocation density, dislocation arrangement, stacking-fault energy, diffusivities, the elastic constants, and so forth. It is clear that the correct interpretation of solid-solution strengthening phenomena cannot be given until the importance of indirect strengthening effects is properly evaluated. In the particular case of close-packed metal crystals, Seeger showed that solute strengthening effects in dilute solutions of copper and silver might be accounted for by an increase in dislocation density due to the addition of the solute. Seeger's argument was that the strengthening effects extrapolated from more concentrated solutions indicate that small concentrations of impurities raise the critical resolved shear stress much more than is predicted by a concentration-independent dislocation density. The above idea was a very reasonable one. The dislocation theories of work hardening of Taylor,2 Cot-trell, 3 Mott, 4 and seeger5 had already associated the increased flow stresses with increased dislocation densities in deformed metals; investigations of the dislocation structure of metal crystals had provided a logical basis for expecting an increased dislocation density in crystals containing impurities (see for example, Ref. 6). The numbers involved seem reasonable, too. It can be expected that the flow stress of the crystal would increase as the one-half power of the dislocation density.' Solute additions of 1 at. pct to metal crystals result in strength increases by factors in the range of three to ten. If one assumes that the strengths of the pure metal crystals are determined by their dislocation densities, then dislocation-density increases of one to two orders of magnitude as a result of solute addition would be required to account for the observed strengthening—not an unreasonable expectation. In addition to the effect of the solute addition on dislocation density, one might also anticipate important strengthening contributions to result from the solute's influence on the dislocation arrangement. Parker and washburns have reviewed a number of experimental evidences which show important strengthening effects due to the presence of subboundaries. Further, lattice strains due to impurity segregation would be expected to influence the distribution as well as the dislocation density of the as-grown crystal. As pointed out in the reviews of Chalmers,6 Elbaum,9 and winegard,lo micro segregation of impurities occurs at all interfaces of crystals in cellular growth; the impurity gradient results in lattice strains which can be reduced with the presence of dislocation arrays in the region of the impurity gradient. Hence, one would expect the presence of a solute to favor the formation of dislocation subgrain structures and that the subgrains would have an important influence on the strength of the crystal. The experimental observations that concern the possibility of an important strengthening contribution through the influence of the solute on the dislocation density or arrangement are not in agreement. Haasen has reviewed the observations of Meakin and Wils-dorf,12 Howie,13 and Bocek 36 and concluded that the solute's influence on dislocation density is not sufficient to account for strengthening effects in concentrated solutions but might, as seegerl suggested, make an important contribution in very dilute solutions. On the other hand, Hendrickson and Fine 14 concluded that changes in the dislocation density and dislocation width accounted for the solid-solution strengthening effects observed in silver-based aluminum solid solutions. Goss et a 1.I5 observed dislocation arrays in Ge-6 at. pct Si, Ge-0.2 at. pct Sn, and Ge-0.2 at. pct B crystals that were not observed in germanium crystals of
Citation
APA:
(1968) PART XI – November 1967 - Papers - Effect of Purity on the Dislocation Density and Strength of Silver CrystalsMLA: PART XI – November 1967 - Papers - Effect of Purity on the Dislocation Density and Strength of Silver Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.