Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - Measurement of Retained Austenite in Precipitation-Hardening Stainless Steels

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Peter R. Morris
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1520 KB
Publication Date:
Jan 1, 1968

Abstract

The effecl of preferred orienlation on X-vay dzffvaction measurements of retained austenzte was investigated for four precipitation-hardening staznless steels in sheet form. A method is preserzted for estimating the ervor in measurement associated with a given samplirig direction. The method was used to select an "optimum" sampling direclion in order to minimize errors in measurement due to preferred orientation. hleasuremenls of retained austenite content employing lhe proposed sampling direction are conzpaved to measuretnents enzploying the more commonly used normal direclion for a series of sawzples. THE first application of X-ray diffraction to the measurement of retained austenite in steels is due to Sekito, 1 who employed a photographic technique in which the (111) reflection from a thin strip of gold affixed to a cylindrical sample was employed as a standard. Averbach 2 introduced the "direct comparison" method in which the ratios of observed to calculated random intensity are assumed proportional to the austenite and/or martensite contents. Averbach's work forms the basis of most subsequent X-ray diffraction methods for the determination of retained austenite. Subsequent improvements are due to: Averbach and Cohen,3 who employed a sodium chloride crystal to monochromate cobalt radiation; Averbach et a1.,4 who introduced a bent sodium chloride monochromator; Mager,' who used a bent quartz crystal to monochromate chromium radiation ; Littmam, who first used a geiger counter diffractometer for this purpose; Beu and Beu and Koistinen, 11,12 who studied effects of absorption factor, surface preparation, sample geometry, integrated intensity vs peak height, choice of radiation, monochromator, and filter. The possibility of errors in measured values due to orientation effects was noted by Miller,13 who suggested examination of a surface other than the plane of rolling. Lopata and Kula 14 have developed an experimental technique in which the preferred orientation is measured in each sample. They illustrated the method for a sample containing 42 pct retained austenite. Application of their technique to the 1 to 15 pct range typical for the precipitation-hardening stainless steels does not appear feasible. EXPERIMENTAL PROCEDURE The nominal compositions of the precipitation-hardening stainless steels investigated are listed in Table I. Ingots were solution-treated, hot-rolled to approximately 0.2 in., and reduced to 0.050 in. by a suc- cession of cold rolling and annealing operations. After this treatment the 17-4PH sample was in the marten-sitic condition, while the 17-7PH, PH 14-8Mo, and PH 15-7Mo samples were in the austenitic condition. Samples of 17-7PH and PH 15-7Mo steels in the mar-tensitic condition were obtained by heating to 1750'F for 10 min and holding at -100°F for 8 hr. A sample of PH 14-8Mo steel in the martensitic condition was obtained by heating to 1700°F for 1 hr and holding at -100°F for 8 hr, followed by aging at 950" for 1 hr. POLE FIGURE DETERMINATIONS Samples were thinned to 0.003 to 0.005 in. by etching in a solution containing 250 ml reagent-grade phosphoric acid (85 to 87 pct H3PO4), 250 ml technical-grade hydrogen peroxide (30 to 35 pct H 2 O 2), and 50 to 100 ml reagent-grade hydrochloric acid (37 to 38 pct HCl). The specimens were placed in an "integrating" sample holder which provided a 1-in. oscillation in the plane of the sample. The diffractometer was aligned to measure the intensity diffracted by planes of the particular {hkl} type being studied. The sample was Set for a given latitude angle, a, measured from the plane of the sheet, and diffracted intensity recorded as the longitude angle, 0, measured in the plane of the sheet from the rolling direction, was increased from 0 to 360 deg. After a 360-deg scan of B, a was incremented by 5 deg, and the process repeated. Random standards obtained by spraying suspensions of powdered iron (bcc structure) and nickel (fcc structure) in lacquer were used to correct observed intensities for absorption and geometrical effects. Zirconium-filtered molybdenum radiation was used to determine the transmission regions of the (111) (0to 45 deg), (200) (0 to 60 deg), and (220) (0 to 45 deg) austenite and (110) (0 to 45 deg), (200) (0 to 50 deg), and (211) (0 to 35 deg) martensite pole figures. Vanadium-filtered chromium radiation was used to
Citation

APA: Peter R. Morris  (1968)  Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - Measurement of Retained Austenite in Precipitation-Hardening Stainless Steels

MLA: Peter R. Morris Part X - The 1967 Howe Memorial Lecture – Iron and Steel Division - Measurement of Retained Austenite in Precipitation-Hardening Stainless Steels. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account