Part X – October 1968 - Papers - Experimental Study of the Orientation Dependence of Dislocation Damping in Aluminum Crystals

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Wolfgang Sachse Robert E. Green
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
372 KB
Publication Date:
Jan 1, 1969

Abstract

Simullaneous ultrasonic attenuation measurements of both quasishear waves propagating in single cryslals of aluminum indicate that, in the undeformed annealed state, the dislocation density is generally not uniform on all slip systems. Change oof attenuation measurements made during plastic defortnation of crystals , which possessed specific orientations ideal for studying the orientation dependence of dislocation damping, indicate that, for low strain levels, dislocation motion occurs on additional slip systems besides the primary one, even for crystals oriented for plastic deformation by single slip. THE sensitivity of internal friction measurements permits such measurements to be used successfully in studying the deformation characteristics of metal crystals. On the basis of experimental observations, T. A. Read1 was the first to associate internal friction losses with various dislocation mechanisms. Since that time further work2-' has been performed and a dislocation damping theory has been formulated by Granato and Lucke.6 In the amplitude independent region, this theory predicts the attenuation a to be dependent on an orientation factor O, a dislocation density A, and an average loop length L. if is a constant, independent of crystallographic orientation. For a given crystallographic orientation, changes in dislocation density and loop length give rise to the observed attenuation changes accompanying plastic deformation. The Granato-Liicke theory suggests the investigation of the orientation dependence of attenuation measurements in hopes of obtaining information to separate dislocation motion losses from other losses.7 An experimental study of the orientation dependence of attenuation in undeformed annealed single crystals should yield an insight into the uniformity of dislocation distribution throughout the entire specimen. A similar study on crystals plastically deformed in a prescribed fashion should give information about the alterations in the dislocation distribution on the slip systems activated during plastic deformation. The possible modes of elastic waves which can be propagated in aluminum,8 copper,9 zinc,10 and other hexagonal metals" have been calculated. Associated with each mode of wave propagation are dislocation damping orientation factors, which are based on the resolution of the stress field of that particular elastic wave onto the various operative slip systems in the material. These orientation factors have also been calculated as a function of crystallographic orientation in the papers cited above. Einspruch12 obtained agreement between predicted and observed attenuation values of longitudinal and shear waves in (100) and (110) directions of two undeformed aluminum crystal cubes. He ascribed the slight deviations between predicted and observed values to a nonuniform dislocation distribution, or to other loss mechanisms. In shear deformation of zinc crystals, Alers2 found that the attenuation of shear waves having their particle displacements in the slip plane was very sensitive to the deformation, while the longitudinal wave attenuation was affected only when the wave propagation direction was not normal to the slip plane. Using aluminum single crystals oriented for single slip, Hikata3 et al. found that during tensile deformation the change of attenuation of the shear wave (actually quasishear) having particle displacements nearly perpendicular to the primary slip direction exhibited the easy-glide phenomena, while longitudinal waves did not. Similar results were reported by Swanson and Green5 during compressive deformation of aluminum crystals. These results are in qualitative agreement with the calculated orientation factors for specimens of this orientation. In well-annealed, undeformed aluminum crystals, the damping is expected to be due to dislocations vibrating on all twelve slip systems. The orientation factors associated with this initial damping will be designated by O2 and O3, where a, represents the average orientation factor for the slow shear (or quasishear) wave and O3 represents the average orientation factor for the fast shear (or quasishear) wave. The calculation of these values for aluminum crystals by Hinton and Green8 shows that they vary very little as a function of crystallographic orientation—at most, by a factor of 2.47. If the dislocation density and loop length are uniform, then in the initial undeformed state, Here the subscript zero refers to the initial value of the attenuation. Also for aluminum, the calculations8 show that the orientation factors for primary slip only, associated with each shear wave, exhibit a sharp minimum for particular crystallographic orientations. A composite plot of the two shear wave orientation factors for primary slip only is shown in Fig. 1. Since these orientation factors are associated with dislocation motion occurring on the primary slip system only, the proper condition to check these factors might be attained by slightly deforming a single crystal oriented for primary slip. For dislocation motion on the primary slip system only,
Citation

APA: Wolfgang Sachse Robert E. Green  (1969)  Part X – October 1968 - Papers - Experimental Study of the Orientation Dependence of Dislocation Damping in Aluminum Crystals

MLA: Wolfgang Sachse Robert E. Green Part X – October 1968 - Papers - Experimental Study of the Orientation Dependence of Dislocation Damping in Aluminum Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account