Part VIII - Papers - Thermodynamic Properties and Second-Order Phase Transition of Liquid Cd-Sb Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 2756 KB
- Publication Date:
- Jan 1, 1968
Abstract
The thermodynamzc properties oJ liquid Cd-Sb alloys were investigated using the cell arrangement measurments were obtained every 2°C at a heating and cooling rate of 12°C per hr and at equilibrium every 2O0C frorn 500°C down through the stable liquidus. The S-shaped asCd US composition curve was used in the cotnposition regzon near Cd,Sb, to calculate a tempeerture-dependent inleraction coefficient from quasichemical theory. Rapid changes in a scd were observed at a transition temperature varying from 400" to 465°C depending on con/kosition. It could not be determined if the changes in aScd were discontinuous, but tlze composition dependeke of the magnitude of the change is indicative of a second-order phase transformation in the liquid. The values of the experimental changes in ASCd are in agreement with calculations from the slope of the transition temperature, using the concept that a second-ovdev phase transition occurs in liquid Cd-Sb alloys. II is suggested that the transformalion is associated with the formation of Cd4Sb3 molecules in the liquid. ThE structure of liquid alloys is the subject of many investigations. X-ray, resistivity, and thermody-namic data have been interpreted as indicating varying degrees of short-range order in the liquid in alloy systems forming inter metallic compounds. In general, the melting process is not a transition from an ordered to a completely disordered state, but some degree of order is retained in the liquid. Maximum ordering in the liquid state occurs close to the melting temperature of the compound and the arrangement of atoms becomes more random at higher temperatures. Of special interest in this respect is the Cd-Sb system. It is one of the few metallic systems which form both stable and metastable compounds when liquid alloys are cooled at normal rates. The stable system exhibits an intermetallic compound, CdSb, melting at 459"c.l A second compound, CdrSbs, has also been reported,' melting close to this temperature. The metastable system has one compound, CdsSbz, melting at 420"c.I Resistivity measurements on liquid Cd-Sb alloys close to the liquidus temperatures have been interpreted in terms of a complex ordering behavior which changes rapidly with increasing temperature.3 The resistivity-composition curve is characterized by two maxima corresponding in composition to CdSb and CdsSbz. The resistivity-temperature plots show sharp breaks for alloys in the composition range of 45 to 70 at. pct Cd on cooling through a transition temperature close to the stable liquidus. Fisher and phillips4 investigated the influence of temperature and composition on the viscosity of liquid CdSb alloys. The viscosity of some alloys increases sharply on supercooling below the stable liquidus. A maximum in the viscosity-composition curve occurs at the composition CdSb. The thermodynamic properties of liquid Cd-Sb alloys have been investigated by Seltz and ~e~itt' and Elliott and chipmane by the electromotive-force method and their results are in good agreement. However, these investigations were carried out at temperatures well above the liquidus temperatures of the alloys, and the temperature coefficients of the electromotive force, dE/dT, were obtained from experimental points for each alloy at a few temperatures considerably above the liquidus temperature. Scheil and ~aach' investigated the thermodynamic properties of this system by the dew point method in the temperature range from about 100°C above the stable liquidus down into the supercooled liquid region. They reported several anomalies, i.e., the activity of a melt on heating differed from that on cooling, and the activity increased sharply in the limited temperature interval immediately above the liquidus temperature of the stable alloy, followed by a sudden decrease below the liquidus. Values obtained on heating and cooling were not in agreement. A reinvesti-gation of a few alloys by Scheil and Kalkuhl' by the electromotive-force method failed to confirm these observations. The authors concluded that the anomalies were due to inhomogeneities in the starting alloys and they discarded their previous results. The present investigation was undertaken in order to obtain thermodynamic data close to the liquidus temperature and in the supercooled region where the anomalies were originally reported, employing the electro motive-force method. This method is quite precise and will most easily permit observations of small changes in activity and partial molar entropy with temperature. Measurements were taken every few degrees so that the dE/dT values could be calculated over the entire temperature range and small changes in the thermodynamic properties close to the liquidus temperature could be observed. I) EXPERIMENTAL PROCEDURE Specimens were prepared from 99.999+ pct Cd and Sb (Cominco). Surface oxide was removed by scraping and then melting the metals under vacuum and filtering through Pyrex wool. Appropriate amounts of the metals were weighed on an analytical balance to k0.1 mg, sealed in double Pyrex capsules under vacuum,
Citation
APA:
(1968) Part VIII - Papers - Thermodynamic Properties and Second-Order Phase Transition of Liquid Cd-Sb AlloysMLA: Part VIII - Papers - Thermodynamic Properties and Second-Order Phase Transition of Liquid Cd-Sb Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.