Part VIII - Papers - Martensite-to-Fcc Reverse Transformation in an Fe-Ni Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. Jana C. M. Wayman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1370 KB
Publication Date:
Jan 1, 1968

Abstract

The reverse transformation of bcc martensite to the fcc phase was studied in an Fe-33.95 wl pct Ni alloy by nzeans oj dilatometry, melallography, and electron microscopy. Upon "slozc" heating (-1°C per min) length cJmnge us temperature plots showed u gradual contracLion over the temperature range 200" to 280"C ,followed by a more abrupt contraction beginning a1 -280°C. Howet,ev, zchen the heating rate was increased -4°C per tnin, no gradual contraction was observed and only the abrupt contraction starting at -2BO"C was found. Thus on slower heating- the AS "temperature" for the subject alloy, unlike the MS temperature, is better defined as a range of temperatures. Both optical and transmissiorl electron microscope observations showed that some of the martensite plates exizibited a partial loss of transformation twins during reversal. The midvib region of the martensite plates disappeaved relatively early duirng the reversal. Metallographic observations slowed that the earliest detectable stage of the rezlerse tvansforrvration begins (axd Moues inulardly) at The Martensens i te - parent interface. At higher temperatirres, the. formation of martensitically reversed jcc plates within the bcc martensite plales was observed. It is concluded that the reverse transformation consists of a diffusion less process (martensitic); but this is ps-obably aided by a prior or simultaneous dijjusiorz-comltvolled process, at leasl in the case of slower heat-ing' experiments. ALTHOUGH numerous investigations have dealt with the parent-to-martensite ("forward") transformation (fcc — bcc) in Fe-Ni alloys, comparatively little is reported on the ("reverse7') martensite-to-parent transformation.'-4 Even though such reverse transformations have been studied in detail in some nonferrous systems, one of the difficulties of studying the reverse transformation in most ferrous mar-tensites is that the martensite decomposes by tempering during heating. However, carbonless Fe-Ni alloys do not exhibit this difficulty since the transformation in these alloys is completely reversible. The present investigation represents an attempt to shed more light on the nature and mechanism of the martensite-to-parent transformation. 1) EXPERIMENTAL PROCEDURE 1.1) Alloy Prepatation. Fe-Ni alloys of compositions near 34 wt pct Ni were prepared from zone-refined iron (99.994 wt pct Fe) and high-purity nickel (99.999 wt pct Ni) by induction melting in recrystallized alumina crucibles in an argon atmosphere, with prior vacuum evacuation to 10"3 mm Hg. The alloys were homogenized by induction stirring in the molten state for 5 min. After solidification, the alloys were further homogenized in evacuated quartz capsules for 96 hr at 1230°C. 1.2) Dilatometry. Slices of the ingot were hot-forged (750°C in air) into approximate rod form and these specimens were then hot-swaged (750°C in air) into long cylindrical rods 0.55 mm diam. From the rods, specimens about 1 in. long were cut. These were then vacuum-annealed for 24 hr at 1200°C, cooled to room temperature, and subsequently transformed to martensite in liquid nitrogen (whereby about 40 pct transformation was obtained). Dilatation measurements were made by observing length changes in a vacuum dilatometer with an externally mounted LVDT sensing element. 1. 3) Preparation of Electron Microscope Specimens. Slices of the ingots were cold-rolled (with intermediate vacuum anneals) to -0.020 in. Out of these rolled sheets, specimens (about 1 by 1 in.) were cut. These were then vacuum-annealed, transformed to martensite by cooling in liquid nitrogen, and subsequently heated from room temperature to various temperatures to effect either partial or complete reverse transformation. These specimens were then chemically polished to 0.002 in. in l:l HsOz (30 pct) and &PO4 (85 pct) solution, and thinned to electron transparency in an electrolyte consisting of 150 g CraOs, 750 ml glacial acetic acid, and 30 ml ~~0.~ Observations were made with a 100-kv Hitachi HU-11 electron microscope equipped with an HK-2A tilting device. 1.4) Optical Microscopy. Metallographic observations were made with a Leitz MM5 metallograph on the same 0.020-in. sheet specimens as were used for electron microscopy and on bulk specimens which were 0.2 in. or more on a side. The chemical thinning solution when cooled below 20°C also served as an etchant for this alloy. Observations of surface relief were made with a Zeiss interference microscope employing a Thallium light source of wavelength 0.54 p. Specimens for interference studies were prepared by two-stage polishing on Buehler vibromet polishers using 0.3 and 0.05 p alumina abrasives. 2) EXPERIMENTAL RESULTS 2.1) Comparison of the MS,AS, and Af Tempera-tures wTth Previous Re sults. The AS aLd Af tempera -tures of several Fe-Ni alloys were determined dila-tometrically. The MS temperatures of the same alloys were determined by continuously lowering the temperature using a mixture of isopentane and liquid nitrogen and observing the highest temperature at which a prepolished specimen showed surface upheavals. For the present the As temperature is defined as the temperature at which an abrupt decrease in length occurs in the dilatation plot. The Ms,As7 and A determinations in the present investigation and those of Kaufman
Citation

APA: S. Jana C. M. Wayman  (1968)  Part VIII - Papers - Martensite-to-Fcc Reverse Transformation in an Fe-Ni Alloy

MLA: S. Jana C. M. Wayman Part VIII - Papers - Martensite-to-Fcc Reverse Transformation in an Fe-Ni Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account