Part VIII - Papers - A Thermodynamic Investigation of the Compounds In3SbTe2, InSb and InTe

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1485 KB
- Publication Date:
- Jan 1, 1968
Abstract
The heals of formation at 78", 195, and 273°K of the ternary compound h3SbTe2 based on the elements and based on the binary compounds In Sb and [inTe have been measured. The heats of formation at these temperatlcres of the binary compounds In Sb and In Te based on the elements have also been determined. Heal contents and free energies of the three compounds have been calculated from 0° lo 80I)°K. The free energies of joyrrzalion, heats of formations, and entropies of formation at 298°K have also been calculated. The results shown that the tertnary compound is metastable with vespecl to InSh and ln Te below 696 °K. bul is slable above that temperature. The weaker bonding of results in a positice entropy of formation which with incrensirzg temperature makes increasing negative conlvihtclions to the free energy and above 696°K renders the compound slable. THE ternary compound In3SbTez occurring in the quasi-binary system In Sb- In Te' forms on cooling at 829°K by a peritectic reaction.' Observations at 673" and 573 K have shown that this ternary compound decomposes slowly into the binary compounds InSb and1n~e.l'' It has not been possible to analyze the metastable behavior of the ternary compound because up to the present time data on its thermodynamic properties have been lacking. Some information on the binary compounds, however, is available. The heat of formation of InTe at 273°K and its free energy at 673°K are kn~wn.~'~ The heats of formation of InSb at 78", 273', 298", and 723°K have been measured5-' and its heat capacity between approximately 12" and 300"Kg9l0 is also known. In the investigation reported here the heats of formation at 78% 195% and 273°K of the ternary compound In3SbTez have been measured. The heats of formation of the binary compounds InSb and InTe at these temperatures have been obtained by combining new calorimetric results with previously published data. The heat contents and free energies of the three compounds at various temperatures from 0" to 800°K have been calculated. Against the background of this information, the metastability of the ternary compound will be discussed. 1) EXPERIMENTAL 1.l) Preparation of Specimens. The materials used consisted of the elements indium, antimony, and tellurium, the binary compounds InSb and InTe, and the ternary compound In3SbTez. The elements, obtained from American Smelting and Refining Co., had a nominal purity of 99.999+ pct. The compound InSb was Cominco semiconductor grade; the compound InTe was prepared from the elements by melting under a vacuum of 10-h m Hg followed by slow cooling. Three batches of specimens of the compound In3SbTez were used. One batch was prepared by melting appropriate amounts of the elements in an evacuated and sealed Vycor tube. The melt was held at approximately 100°K above the liquidus for about 8 hr, shaken repeatedly, and quenched into a mixture of ice and water. The specimen was annealed in vacuum at 760°K for 4 weeks. In preparing a second batch, a mixture of the component elements was melted and quenched in water. The resulting ingot was powdered. The powder was pressed into pellets, which were annealed in vacuum at 748" to 773°K for 4 weeks. A third batch was prepared in the same manner as the second, except that the starting materials were InSb and InTe rather than the elements. Metallographic examination of samples of the three batches and X-ray diffraction examination of a sample of the second batch did not reveal evidence of microsegregation or a second phase. The results obtained with the three batches showed no systematic differences. 1.2) Calorimetry. The calorimetric method has been described in detail." Samples of the compound In3SbTez, mechanical mixtures of InSb and InTe in the proportion of 1:2, and mechanical mixtures of indium, antimony, and tellurium in the proportion of 3:1:2 were added to a bismuth-rich bath at 623°K in a metal-solution calorimeter. These additions were made from 78°K (liquid nitrogen), 195°K (dry ice and acetone), and 273°K (ice and water). The heat effects of the additions were measured. The difference in the heat effects of the additions of a compound and the additions of the mixtures of its constituents, adjusted for differences in the concentration of the bath, is the heat of formation of the compound. In the concentration range not exceeding 1.5 at. pct solute, the heat effect of the additions was a linear function of concentration. The heat of formation refers to the temperature from which the additions were made, namely, 78", 195", or 273°K. Several calibrating additions were made in each calorimetric run. The calculated heat capacity of the calorimeter and hence the calculated heat effects of the additions of samples depend upon the values adopted for the heat contents of the calibrating substance. In this investigation bismuth at 273°K was used and a value of 4.96 kcal per g-atom was taken for (HGZ3"k . 2) RESULTS AND DISCUSSION 2.l) Heats of Formation. The heats of formation of the ternary compound In~SbTez from the component elements indium, antimony, and tellurium and from
Citation
APA:
(1968) Part VIII - Papers - A Thermodynamic Investigation of the Compounds In3SbTe2, InSb and InTeMLA: Part VIII - Papers - A Thermodynamic Investigation of the Compounds In3SbTe2, InSb and InTe. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.