Part VIII - Microstructure and Superconductivity of a 44.7 At. Pct Niobium (Columbium)-54.3 At. Pct Titanium Alloy Containing Oxygen

The American Institute of Mining, Metallurgical, and Petroleum Engineers
F. W. Reuter K. M. Rolls J. Wulff
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
2342 KB
Publication Date:
Jan 1, 1967

Abstract

The superconducting behavior and microstructural characteristics of a nominal Nb-40 wt pct Ti-0.239 wt pct O alloy were studied as a function of ther mo -mechanical processing treatment. Critical current density us applied transverse magnetic field was obtained for 0.010-in.-diam wires at 4.2°Kin steady fields 14 to 110 kG. Both optical metallogvaphy and transmission electron microscopy were used to delineate the micros tructures of the same wires. It wan found that a 1-hr 500°C precipitation heat treatment after cold drawing to final size led to the highest critical current density. Heat treatment at 600°C also led to a high critical current density, but the precipitate differs in kind and form from that at 500°C. The resistire critical field was also found to be sensitive to precipitation heat treatment since the effective composition of the superconducting phase changes. This is discussed in terms of the oxygen in interstitial solid solution. Two types of high-field superconducting wire are at present used in the construction of high-field superconducting solenoids. These types are solid-solution alloy wire such as Nb-Zr and Nb-Ti and composites of the brittle inter metallic compound Nb3Sn. The latter generally have a high super cur rent-carry ing capacity which is difficult to vary if properly made. The supercur rent- carry ing capacity of the former can be varied drastically and often predictably by suitable thermomechanical processing treatments. In general, the critical current density Jc of the solid-solution type of alloy is increased by cold work and by additions of interstitial elements along with aging heat treatments. The imperfections which result are be-iieved to be responsible for the observed increase in Jc. In 1962 Kneip and coworkers1 found that the critical faurrent density of Nb-Zr alloys could be increased by proper heat treatment preceded and followed by cold work. Betterton and coworkers2 using a Nb-25 at. pct Zr alloy found that small additions of oxygen or carbon enhanced the effect of this heat treatment. They suggested that the interstitials present aided precipitation in the alloy, leading to a filamentary structure with superior properties. If the precipitation heat treatment was omitted, interstitial additions had a negligible effect on Jc. wong3 showed that higher heat-treatment temperatures lowered Jc. Walker and co-workers,4 who studied microstructure (by transmission electron microscopy) as well as superconductivity, found that the Jc anisotropy introduced by cold rolling was itself affected by heat treatment. They were unable to clarify the relation between microstructure and critical current density, although evidence of precipitation was indicated. More recent investigation of Nb-Zr alloys,5,6 besides showing that structural defects and fiber ing due to cold work and precipitation serve to raise Jc, also elucidate important optically observable microstructural changes which occur upon precipitation. In these reports, coarsening of the microstructural features was found to decrease Jc. Vetrano and Boom,7 who studied Ti-20.7 at. pct Nb, found that Jc was increased to a maximum by a 415°C, 3-hr heat treatment following quenching from 800°C and cold working. Heat treatments can also affect the resistive critical field Hr. Final-size heat treatments of Nb-Zr wire can lower Hr drastically if gross phase decomposition occurs5'* or moderately if the effects of cold work are eliminated without changing significantly the composition of the phase of interest.3,5,6,8 The percentage of oxygen which can be added to Nb-Zr alloys to enhance Jc is limited by the difficulty of subsequent cold drawing. Since Nb-Ti and Ta-Ti alloys in contrast can tolerate appreciably higher percentages of oxygen, it was decided to investigate the superconducting behavior of various alloys in these systems. The present paper describes the results of adding oxygen to a nominal 40 wt pct Nb alloy as a function of thermomechanical treatment. I) EXPERIMENTAL PROCEDURE A small alloy ingot was prepared from high-purity niobium, iodide, crystal-bar titanium, and Nb2O5 powder by arc melting on a water-cooled copper hearth in a gettered argon atmosphere. The ingot was turned and remelted fourteen times to insure homogeneity. After final melting and rapid cooling, it was machined round to 0.415 in. diam, jacketed in stainless steel, and cold-swaged to 0.117 in. diam. The jacket was removed and swaging continued to 0.051 in. diam followed by wire drawing in carbide dies to 0.010 in. diam. Although it was intended that about 1500 ppm O (by weight) be added, inert gas fusion analysis indicated a 2390 ppm 0 content, apparently due to additional oxygen pickup in the arc furnace. Even so, the alloy was sufficiently ductile to be cold-worked to greater than 99.9 pct reduction
Citation

APA: F. W. Reuter K. M. Rolls J. Wulff  (1967)  Part VIII - Microstructure and Superconductivity of a 44.7 At. Pct Niobium (Columbium)-54.3 At. Pct Titanium Alloy Containing Oxygen

MLA: F. W. Reuter K. M. Rolls J. Wulff Part VIII - Microstructure and Superconductivity of a 44.7 At. Pct Niobium (Columbium)-54.3 At. Pct Titanium Alloy Containing Oxygen. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account