Part VIII – August 1969 – Papers - Oxide Formation and Separation During Deoxidation of Molten Iron with Mn-Si-AI Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 535 KB
- Publication Date:
- Jan 1, 1970
Abstract
Fe-O melts containing 0.045 pct 0 were deoxidized with Mn-Si-A1 alloys. Product compositions were reluted to the melt and alloy compositions and were found to be most sensitive to the aluminum content of the alloy. Low residual oxygen contents could be obtained when aluminum oxide was present in the Products because of the reduction of silica and manganese oxide activities. Flotation of the Products from a quiescent melt was followed both by analysis of the oxygen content and metallographic measurement of inclusion concentration. MnO-SiO2-A12O3 products were found to float most rapidly when their composition was such that their viscosity may be expected to be low. Changes in the particle size distribution indicates that particle coalescence occurred and differences in the degree of coalescence are thought to be responsible for the different flotation rates observed between products 0f differing composition. Measured flotation rates were slower than those Predicted from a model based on Stoke's Law, although alumina flotation might be reasonably accounted for by this model. Interfacial effects between oxide particles and the melt are believed to be responsible for the discrepancy. It has been recognized that deoxidation products constitute a large proportion of the nonmetallic inclusions present in killed steel. The amount of oxide inclusions which originate as deoxidation products depends largely upon three factors. These may be summarized, according to P16ckinger1 as: 1) Amount of primary products remaining in the steel prior to cooling. 2) Residual dissolved oxygen content of the steel after deoxidation. 3) Amount of secondary products, formed during cooling and solidification, which remain entrapped in the solid steel. In a well-deoxidized steel containing residual aluminum and/or silicon, the equilibrium dissolved oxygen content is usually very low and so the maximum amount of oxide which may be produced as secondary deoxidation products is small in comparison with the amount of primary products. It may be seen, therefore, that the amount of indigenous nonmetallic inclusions may be minimized if a low dissolved oxygen content is achieved by deoxidation and if the primary deoxidation products are efficiently removed. Oxides which originate by reaction of the metal stream with the atmosphere during teeming are not considered in the present study. It is known that two or more deoxidizers may result in a lower equilibrium oxygen content when used in conjunction with one another than when any of the individual deoxidizers are used alone. Equilibrium studies by Hilty and crafts2 and by Bell3 have shown that manganese increases the effectiveness of silicon as a deoxidizer, and Walsh and Ramachandran4 relate this to a reduction in the activity of silica in the products as the manganese :silicon ratio in the steel increases. It was also shown by Herty's work on deoxidation of steel by silico manganese alloys,5 that there existed an optimum ratio of manganese to silicon which gave a minimum inclusion content. This ratio was in the range 4:l to 7:l and the (FeO-MnO-SiO2) products formed by such deoxidation practice were found to lie in a composition range having very low liquidus temperatures (1170 to 1250°C approx). The optimum manganese:silicon ratio was then explained by postulating that these fluid products were able to coalesce and that the larger particles formed floated out of the steel very quickly as predicted by Stoke's Law. The present work examines the effectiveness of various Mn-Si-A1 alloys as deoxidizers and their effects on the composition and removal of primary deoxidation products from a quiescent melt. EXPERIMENTAL TECHNIQUE Approximately 250 g of prepared Fe-O alloy, containing 0.045 to 0.055 pct O, were melted in an alumina crucible and deoxidized at 1550°C by plunging a thin steel cartridge containing the deoxidizer below the melt surface. A high frequency induction furnace supplying current at 8.5 kHz was used to heat a graphite susceptor, the interior of which had been machined to give a wall thickness of 0.85 in. to form a receptacle for the alumina crucible. The iron melt was essentially quiescent as the induced current was concentrated at the external surface of the graphite susceptor by the skin effect. A nonoxidizing atmosphere was maintained over the melt by passing a continuous stream of argon through the lid of the susceptor. The melt temperature was measured before deoxidation, and again at the end of an experiment by means
Citation
APA:
(1970) Part VIII – August 1969 – Papers - Oxide Formation and Separation During Deoxidation of Molten Iron with Mn-Si-AI AlloysMLA: Part VIII – August 1969 – Papers - Oxide Formation and Separation During Deoxidation of Molten Iron with Mn-Si-AI Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.