Part VIII – August 1968 - Papers - Cellular RecrystaIIization in a Nickel-Base Superalloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. M. Oblak W. A. Owczarski
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
910 KB
Publication Date:
Jan 1, 1969

Abstract

A cellular appearing recrystallization product formed by annealing a cold-worked nickel-base super-alloy at 1800°F has been studied by electron nzicroscopy. Prior to deformation, an equilibrium micro-structure of fcc matrix y and cuboidal ,,', Ni (Al, Ti), precipitates of CuzAu structure had been established by an age at 1825°F. The strain-free recrystallization cells consist of very large rodular y' particles in a y matrix. They precipitate is oriented and coherent both before and after recrystallization. The results showed that y' coarsening accompanies recrystallization at 1800°F. However, it does so as a secondary effect and does not necessarily take place at lower temperatures. The structural similarity of this reaction to cellular precipitation in other systems indicates that lattice strain may also play a significant role during some cellular precipitation reactions. THERE have been numerous microstructural investigations of recrystallization in single-phase materials but two-phase systems have received much less attention. The second phase can either remain inert or be altered along with the matrix during recrystallization. If the second phase is an oxidelm3 or a relatively inert pre~ipitate,~, recrystallization is retarded when the interparticle spacing is less than 1 p. Prior to the onset of recrystallization, these materials show a well-polygonized substructure with the subgrain size limited by the interparticle spacing. Since recrystallization by the motion of preexisting grain boundaries6 is not observed, retardation has been related to particle pinning of the subboundaries. This pinning prevents coalescence' or growth8 of subgrains to a critical size (formation of a high-angle boundary) necessary to initiate recrystallization. In a material such as a nickel-base superalloy both y matrix and y' precipitate are altered by the recrystallization reaction. Haessner et al.' studied the recrystallization of a cold-rolled Ni-Cr-A1 alloy by electron microscopy. The material was initially cold-rolled in the supersaturated condition. upon annealing at 750°C, immediate precipitation of 7'occurred. Presence of this 7' greatly retarded the onset of recrystallization which eventually took place by the development of randomly oriented, strain-free grains. The original •/ was dissolved at the recrystallization interface and reprecipitated as oriented, coherent par-tiles in the new grain. Recrystallization caused a refinement of .)' particle size. Recently ~hillips'' investigated recrystallization of Ni-12.7 at. pct Al. Reduction by cold rolling presumably elongated the p' precipitate into lamellae that remained coherent with the matrix. After recrystallization at 600" to 750°C, there was no unusual change in y' particle size al- though there was a tendency toward clustering along the prior rolling direction at 750°C. Above 750°C, the recrystallized grains were generally free of precipitate. Studies in the somewhat analogous Cu-3.23 wt pct CO" and Cu-2 wt pct'2 systems demonstrated that the coherent cobalt-rich fcc precipitate in these alloys obstructed softening, initiation, and completion of recrystallization. The precipitates were deformed into lam~llae during rolling and those of diameter less than 250A remained coherent. Recrystallization took place by the growth of new grains into the recovered or poly-gonized material. In the first study," both matrix and precipitate reoriented in the same manner upon passage of the recrystallization interface. There was no change in particle size or morphology. Tanner and ~ervi,~ on the other hand, observed that motion of the recrystallization fronts was strongly hindered by the pinning action of coherent precipitates in the deformed material. Particles in contact with a pinned boundary coarsened and coalesced leaving a denuded zone in the unrecrystallized region. When the number of pinning points was sufficiently reduced by coalescence, the boundary swept past these particles and through the denuded zone. The authors1' considered this as a variation of discontinuous precipitation with both chemical driving force and deformation strain energy contributing to recrystallization. Preliminary observations by the present authors had revealed that recrystallization in Udimet 700, a nickel-base superalloy, occurred in an entirely different manner. Optical metallography showed that the recrystallized product formed as cellular colonies containing coarse y' particles elongated in the direction of cell growth. In this investigation the structural features of this reaction were investigated by transmission electron microscopy. EXPERIMENTAL PROCEDURE As-received I$-in. rounds of Udimet 700* were (wtpct) 18.4 15.2 4.95 4.42 3.43 0.06 0.031 0.14 Bal. solution-annealed for 4 hr at 2150" and then fast air-cooled. An initial y-~' structure was established by a 4-hr age at 1825°F followed by a fast air,cool. Essentially the equilibrium volume fraction of ?' at 1825°F is precipitated within 4 hr. Microstructural examination showed no measurable increase in the amount of precipitate after longer aging times. Deformation consisted of swaging to 52 pct RA with 6 pct reduction per pass at room temperature. To reduce the precipitation potential to a negligible amount, recrystallization anneals were conducted at 1800"~ (982"~). Microstructures were investigated by optical and transmission electron microscopy. To prepare foils for electron microscopy, the material was first sliced into 30-mil slabs parallel to the swaging direction. Discs were dimpled and electrolytically cut from
Citation

APA: J. M. Oblak W. A. Owczarski  (1969)  Part VIII – August 1968 - Papers - Cellular RecrystaIIization in a Nickel-Base Superalloy

MLA: J. M. Oblak W. A. Owczarski Part VIII – August 1968 - Papers - Cellular RecrystaIIization in a Nickel-Base Superalloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account