Part VII - Papers - Structural Changes in Petroleum Coke During Calcination

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 2167 KB
- Publication Date:
- Jan 1, 1968
Abstract
Various commercial pelroleum cokes were heat-1,reated at temperatures between 500° and 1500°C, in a nitrogen atmosphere, in laboratovy induction furnaces. The rate of tenlperature rise was varied betzveen 10" and 300°C per min, or the green cokes were flash-calcined, orv a combination of heating rates was used. Changes in the rate of heating had only negligible effects on the degree of' calcination as characterized by mean crystallite thickness and the chemical properties of the calcined coke. The physical structure of the cake was however significantly affected when rate of heating during calcination exceeded 50°C per min over the temperature range of 600° to 900°C. Surface-accessible porosily increased with the .rate of temperature rise, and this was accompanied by a change in pore size distribution. Source and properties of the green coke also had an influence on the structure of the calcined coke. The evidence presented suggests a similar mechanism of porosity development in petroleuiiz coke during calcination in industvial equiplnenl, such as rotary kilns. An increase in surface accessible povosity incveased the pitch binder requirement when the coke was used as aggregate in Soderberg paste. A correlation was established between calcined coke porosity and paste binder requiremenl. ManY results have been published on the changes of properties of petroleum coke during calcination, such as chemical composition, real density, electrical resistivity, crystallite and pore structure. The correlation of these properties with temperature of calcination and time at maximum temperature has been rather well established in both laboratory and pilot plant experiments. Surprisingly little attention has been given however to the effect of calcination conditions, such as rate of temperature rise or furnace atmosphere, on the chemical and structural properties of the calcined coke. It has been observed that petroleum coke, when calcined in industrial equipment, acquires higher porosity and lower real density than those attainable in laboratory furnaces at apparently identical calcina- tion temperature and soaking time. This paper describes a study of the effect of rate of heating during calcination on calcined coke properties using green petroleum cokes of different volatile matter, hydrogen, and sulfur content. An attempt was made to correlate the changes in coke structure with the flowability of anode paste of the type normally used in aluminum reduction cells. EXPERIMENTAL Petroleum Cokes Used. In the study of release of volatile matter and sulfur during calcination and the effect of rate of heating on calcined coke properties two delayed cokes of different sulfur contents were used. The results of analysis of the green cokes are given in Table I. In the study of the effect of flash calcination thirty-six commercial petroleum cokes from twelve different refineries were used with a range of properties shown in Table 11. Calcination Conditions. Calcination experiments were carried out in a laboratory induction furnace. In each run a 200-g sample of dry green coke sized to 10 by 65 Tyler mesh was calcined in a graphite crucible. The crucible containing the sample was placed in the middle of a stack of eight others filled with metallurgical coke to reduce temperature gradients within the sample. Temperature was measured by two Pt, Pt-10 pct Rh thermocouples and controlled by a Celectray instrument. The two couples generally agreed within 5°C. In the study of volatile matter and sulfur release the samples were heated to temperatures in the range of 500" to 1500°C at a rate of 10°C per min in a nitrogen atmosphere and held at the final temperatures for 30 min. In the study of the effect of heating rate on calcined coke properties the desired rates between 10' and 300°C per min were obtained by manually adjusting the power input. Flash calcination was carried out by dropping 100 g of the green coke into the graphite dish preheated to the calcination temperature. Because of the small heat capacity of the furnace the coke was introduced in 20-g portions at a time. For this purpose a 2-in.-long nipple between two 1-in. gate valves installed on the top flange of the furnace served to provide a gas seal while feeding coke to the furnace. It was estimated that the temperature of the coke reached that of the furnace at a rate of approximately 1000°C per min. Holding time at final temperature was also 30 min. Calcined Coke Proper- Determined. Porosity was determined on 20 by 35 Tyler mesh samples using an Aminco-Winslow mercury pressure porosimeter with an operating range of 1.8 to 3000 psi absolute pressure (100 to 0.05 p pore diameter range).' Apparent density was obtained by the mercury poro-simeter. It represents a particle density of the 20 by
Citation
APA:
(1968) Part VII - Papers - Structural Changes in Petroleum Coke During CalcinationMLA: Part VII - Papers - Structural Changes in Petroleum Coke During Calcination. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.