Part VII – July 1969 – Papers - Colony and Dendritic Structures Produced on Solidification of Eutectic Aluminum Copper Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pradeep K. Rohatgi Clyde M. Adams
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
689 KB
Publication Date:
Jan 1, 1970

Abstract

Structures produced upon solidification of the eu-tectic composition (33 wt pct Cu) aluminum copper alloy have been examined as a function of freezing rate dfs /d? , the rate of change of fraction solid (fs) with time (8). Slow (dfs/d? = 0.0016 sec-1), intermediate (dfs/d? = 0.02 sec-1) and rapid (dfs/d? = 0.4 to 7.30 sec-1) freezing rates were used. The lamellar Al-Cual2 eutectic is arranged in the form of rod-shaped colonies at rapid freezing rates. The colonies are aligned parallel to the direction of heat flow, whereas the lamellae within the colonies are aligned at various angles, as high as 90 deg, to the direction of heat flow. The colony spacing (C) is proportional to the square root of inverse freezihg rate. The relationship is C = 15.5(dfs/d?)-1/2 where C is in µ and 8 is in sec. The ratio of colony spacing to lamellar spacing is greater than 20.0 and increases with a decrease in the freezing rate. A duplex dendritic structure is produced at intermediate freezing rates. A fine lamellar eutectic is arranged within the dendrites (exhibiting side branches at an angle close to 60 deg from the main stem) and a coarse irregular eutectic appears in the interdendritic regions. The duplex eutectic structure is also produced at slow freezing rates. However, at slow freezing rates there is a Platelat of CuAl2, along the center of the main stem of each dendrite and the other lamellae are arranged perpendicular to the central platelet. THE eutectic between CuA12 and a! aluminum has been reported to freeze in a lamellar form by several workers.'-3 chadwick4 has measured the interlamel-lar spacing as a function of growth rate. Kraft and Albright2 have reported on irregularities in the lamellar structures, and have proposed growth models which account for the formation of faults during solidification. In certain instances the lamellar eutectic has been found to exist in colonies. The colony formation315 has been attributed to the breakdown of a planar liquid-solid interface due to rejection of impurities. The aim of the present work is to study the structures produced from the eutectic aluminum-copper alloy under relatively fast solidification rates, such as encountered in casting and welding operations. The solid-liquid interface presumably remains planar under conditions of slow unidirectional freezing which produce lamellae aligned parallel to the direction of heat flow. The local growth velocities are the same over the entire interface and are equal to the rate of growth of the all-solid region. The spacing between the eutectic lamellae is inversely proportional to the square root of the growth rate of the all-solid region. Under the freezing conditions used in the present study, the solid-liquid interface is cellular or dendritic and the local growth velocities are different in the different regions of the interface. The relationship between the growth rate of the all solid region and the local growth velocities varies with the location and the shape of the interface. The growth rate of the all-solid region is, therefore, an inadequate parameter to describe the eutectic micro-structures which depend upon the local growth velocities. For this reason the structures have been examined as a function of freezing rate, dfs/d?, where fs is the fraction solidified at time 0. The freezing rate was varied by a factor of 4000. The relationship between the freezing rate, dfs/d?, and the growth velocit of the all solid region depends upon the specimen geometry and the shape of the interface. EXPERIMENTAL PROCEDURES The A1-33 pct Cu alloy used throughout this study was made in an induction furnace, using electrolytic copper and aluminum of commercial purity (99.7 pct), the primary impurities being silicon (0.12 pct), iron (0.14 pct), and zinc (0.02 pct). Three ranges of freezing rates were investigated: 1) A spectrum of rapid freezing rates (ranging from 0.40 to 7.30 sec-1) was obtained in arc deposits made on 2-in. thick cast plates of the eutectic alloy. The arc was operated at constant power and was made to travel at constant velocity on the surface of the plate that was in contact with the chill surface during solidification. The pool of liquid metal formed under the moving tungsten arc solidified rapidly by heat extraction through the unmelted plate. Conditions of unidirectional heat flow were achieved near the fusion zone interface, especially in the center of the arc deposits. The great advantage of the arc technique is that rapid cooling and freezing rates can be varied in a qualitative way. The correlation between the arc parameters and the solidification rate is given by the following relationship:6-8
Citation

APA: Pradeep K. Rohatgi Clyde M. Adams  (1970)  Part VII – July 1969 – Papers - Colony and Dendritic Structures Produced on Solidification of Eutectic Aluminum Copper Alloy

MLA: Pradeep K. Rohatgi Clyde M. Adams Part VII – July 1969 – Papers - Colony and Dendritic Structures Produced on Solidification of Eutectic Aluminum Copper Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account