Part VII – July 1968 - Papers - The Development of Preferred Orientations in Cold-Rolled Niobium (Columbium)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. A. Vandermeer J. C. Ogle
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
675 KB
Publication Date:
Jan 1, 1969

Abstract

The preferred crystallographic orientations (texture) developed in randomly oriented, poly crystalline niobium during rolling were studied by means of X-ray diflraction techniques. The evolution of texture at both the surface and center regions of the rolled strip was carefully examined as a function of increasing defamation throughout the range 43 to 99.5 pct reduction in thickness. Certain aspects of the center texture development in niobium are in agreement with the predictions of a theory by Dillamore and Roberts, but others cannot be explained by the theory in its present form. Above 87 pct reduction by rolling, a distinctly different texture appeared in the surface layers which was unlike the center texture. The present results are compared with previous results obtained from other bcc metals and alloys. RANDOMLY oriented, poly crystalline metal aggregates when plastically deformed to a sufficiently large extent develop preferred orientations or textures. In a recent review article, Dillamore and Roberts1 pointed out that the nature of the developed texture may be influenced by a large number of variables. These include both material variables such as crystal structure and composition and treatment variables such as stress system, amount of deformation, deformation temperature, strain rate, prior thermal-mechanical history, and so forth. From a practical point of view, the control of preferred orientation may often be important for the successful fabrication of metals into usable components. During the past few decades many experiments have been devoted to the study of deformation textures. This work, however, has been confined in large part to metals and alloys that have an fcc crystal lattice. By comparison, bcc metals and alloys have received much less attention, and consequently our understanding of preferred orientations in these materials is only shallow. This state of affairs worsens when it is realized that almost all of our present howledge about this class of materials derives from studies on irons and steels.' The bcc refractory metals, which are relative newcomers to the industrial world, have, on the other hand, been given at best only passing glances in the area of texture development. Our understanding of the evolution of preferred orientations in bcc metals can only remain fairly limited until systematic studies of metals and alloys other than the irons and steels have been carried out and the influence of the many variables has been determined. To that end a program was initiated to investigate in detail texture development in niobium. The present paper reports some of the results of this study. Textures were determined at both the center and surface of strips rolled variously to as much as 99.5 pct reduction in thickness at subzero temperatures. Emphasis in this paper is on texture description and on texture evolution during rolling to progressively heavier deformation. EXPERIMENTAL PROCEDURE The niobium was purchased from the Wah Chang Corp. as a 3-in.-diam electron-beam-melted billet. Chemical analysis indicated the impurities to be less than 300 ppm Ta, 40 ppm C, 10 ppm H, 170 ppm 0, and 110 ppm N. All other impurities were below the limits of detection by spectrochemical analysis. This large-grained billet was fabricated into specimen stock so that a fine-grained randomly oriented grain structure resulted. This was accomplished in three deformation steps alternated with recrystalli-zation anneals of 1 hr at 1200°C in a vacuum of low 10"6 Torr range after each deformation step. The first step was to alternately compress the billet 10 to 20 pct in each of three orthogonal directions. The second step was to compress in only two directions 90 deg apart to produce a 2-in.-sq bar. The final step was to roll this bar 50 pct to give a 1-in. by 2-in. cross section. After the final anneal, metallo-graphic examination showed the material to have an average grain size equivalent to ASTM No. 5 at 100 times (i.e., 0.065 in. diam). Specimens cut from the center and edges of this bar gave no indication of detectable preferred orientation when examined by X-ray diffraction. Samples 1.5 in. long, either 0.625 or 0.750 in. wide, and approximately 0.400 in. thick were machined from this fabricated ingot. The surfaces corresponding to the rolling planes were ground so as to be parallel. The samples were chemically polished in a solution of 60 pct nitric acid and 40 pct hydrofluoric acid (48 pct solution) prior to rolling to remove any cold work introduced in the machining operations. Rolling was accomplished with a 2-high hand-operated laboratory rolling mill that had 2.72-in.-diam rolls. Prior to operation, the rolls were polished with 600 grit paper, cleaned with acetone, and then soaked in a container of liquid nitrogen for several hours. The samples were also soaked in liquid nitrogen prior to rolling and were recooled between each pass. While some slight heating of the samples occurred during rolling, this procedure maintained the sample temperature well below 0°C at all times. The samples were rolled unidirectionally, and the rolling plane surfaces were not inverted during any phase of the operation. The draft per pass averaged between 0.010 to 0.012 in. After 96 or 97 pct reduction the draft was reduced to 0.001 to 0.002 in. per pass. Samples were rolled to various reductions in thickness between 43 and 99.5 pct.
Citation

APA: R. A. Vandermeer J. C. Ogle  (1969)  Part VII – July 1968 - Papers - The Development of Preferred Orientations in Cold-Rolled Niobium (Columbium)

MLA: R. A. Vandermeer J. C. Ogle Part VII – July 1968 - Papers - The Development of Preferred Orientations in Cold-Rolled Niobium (Columbium). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account