Part VII – July 1968 - Papers - Cellular Precipitation in Fe-Zn Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. R. Speich
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
715 KB
Publication Date:
Jan 1, 1969

Abstract

The interlarnmelm spacing, growth rate, and degree of segregation that accompany cellular precipitation in four Fe-Zn alloys containing 9.7, 15.2, 23.5, and 30.5 at. pct Zn have been determined in the temperature range 400" to 600°C. The chemical free-energy change for the reaction was calculated from the available thermodynamic data and the known compositions of the phases. The fraction of the chemical free-energy change for equilibrium segregation that is converted into interfacial free energy decreases from 0.43 to 0.08 as the magnitude of this free-energy change increases from 35 to 270 cal per mole. At constant temperature the cellular growth rate is proportional to the cube of the dissipated free energy. At 600°C newly 100 pct of the equilibrium segregation is achieved during cellulm precipitation whereas at 400°C only 85 pct of the equilibrium segregation is attained. During cellular growth, mass transport of zinc occurs by grain boundary diffusion; excess zinc remaining in the a! phase after the completion of growth is removed slowly by volume diffusion. A modified Cahn theory of cellular precipitation predicts the observed interlamellar spacing within a factor of two. In cellular precipitation reactions such as pearlite formation or discontinuous precipitation, the basic problem is to predict the variation of growth rate G, interlamellar spacing S, and degree of segregation P with composition and temperature. To accomplish this we need three independent equations relating these quantities. One of these equations comes from the diffusion solution. To obtain two additional independent equations, some assumptions must be made. cahnl has suggested recently that two plausible assumptions are 1) that growth rate is proportional to the dissipated free energy and 2) that the spacing which occurs is that which maximizes the dissipated free energy. According to the first assumption, this spacing also maximizes the growth rate and the rate of decrease of free energy per unit area of cell boundary. The present work was undertaken to test these assumptions. To test the first assumption it is necessary to study a cellular reaction over a wide range of supersatura-tions to establish a relationship between G and the dissipated free energy at constant temperature. This is possible only in discontinuous precipitation reactions since in pearlite reactions constituents other than pearlite form if the composition of the parent phase deviates even slightly from the eutectoid composition. The Fe-Zn system was chosen for study because 1) discontinuous precipitation proceeds to completion over a wide temperature and concentration range, 2) the degree of segregation within the cell can be measured by lattice parameter measurements,2 and 3) the thermodynamics of this system have recently been determined by Wriedt.3 In this system the cells consisting d alternate lamellae of a and r phases form from supercooled iron-rich a phase. The a phase within the cells is bcc as is the original a phase, cia, but has a different orientation and a slightly lower zinc content than the original a phase. The r phase has a zinc content of about 70 at. pct and a crystal structure isomor-phous with T brass. EXPERIMENTAL PROCEDURE Four Fe-Zn alloys with 9.7, 15.2, 23.5, and 30.5 at. pct Zn were prepared from carbonyl-iron powder (400 mesh, 99.8 wt pct Fe) and zinc powder (200 mesh, 99.99 wt pct Zn). The powders were ball-milled together and cold-pressed under 60,000 psi to discs $ in. thick by $ in. diam. The cold-pressed discs of the alloys with 9.7 and 15.2 at. pct Zn were sealed in evacuated silica capsules and heated slowly to 1100°C over a period of 1 week (3 days at 600°C, then 3 days at 80O°C, then 1 day at 1100°C). The alloys with 23.5 and 30.5 at. pct Zn were treated similarly except that the final homogenization temperatures were 1000" and 85O°C, respectively, to prevent melting. The alloys were quenched in iced brine from the final homogenization temperature. Specimens of each alloy were subsequently aged in salt pots at temperatures of 400°, 450°, 500°, 550°, 600°, and 650°C for times that varied from a few minutes to several hundred hours. At a late stage of this work, an alloy containing 11.2 at. pct Zn was prepared by vapor-impregnation of iron foil with zinc vapor at 890°C. This alloy proved useful for electron microscope studies because it was free of porosity. The homogenization and aging conditions were based on the recent Fe-Zn phase diagram of Stadelmaier and Bridgers4 rather than the earlier diagram of ansen.5 They consist of a homogenization heat treatment in the homogeneous a field followed by an aging treatment in the two-phase a + r field. The aged specimens were metallographically polished and etched in 2 pct nital and the radius of the largest cell in the microstructure determined. This radius plotted vs time gave a straight line whose slope is the boundary migration rate or growth rate G of the cell. To determine the interlamellar spacing, specimens were examined by surface-replica and thin-section electron microscope techniques. Because of the irregular nature of the lamellae within the cell, the average interlamellar spacing S .of the cell was measured by the method of Cahn and Hagel,6 where S is defined by:
Citation

APA: G. R. Speich  (1969)  Part VII – July 1968 - Papers - Cellular Precipitation in Fe-Zn Alloys

MLA: G. R. Speich Part VII – July 1968 - Papers - Cellular Precipitation in Fe-Zn Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account