Part VI – June 1968 - Communications - Dispersed-Particle Deformation in WC-CO Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. T. Smith J. D. Wood
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
250 KB
Publication Date:
Jan 1, 1969

Abstract

ALLOYS with a dispersed second phase in a metallic matrix are generally much stronger than the matrix itself. Plastic deformation in dispersion-strengthened alloys is usually confined to the matrix phase when recovery processes are active, while in the absence of recovery both phases may yield.' The alloy system studied in the present research was WC-12 wt pct Co and consisted of noncoherent WC particles dispersed in the cobalt matrix. Some particle-to-particle contact existed but not enough to produce a continuous WC skeleton. The microstruc-ture of the WC particles was characterized by very straight edges, forming a trapezoidal shape in any plane of polish. Previous investigations with WC-Co alloys at room temperature have shown that fracture of the WC particles occurs in transverse rupture testing.' Room-temperature slip was reported for WC particles after indentation for hardness measurements.3 Elevated-temperature deformation of WC particles in a WC-12 pct Co alloy was suggested by recent electron microscope studies of specimens deformed at 900' to 1000°C.4 In highly deformed alloys, the WC edges were serrated in contrast to the usual straight or smooth appearance. WC-12 pct Co and WC-15 pct Co alloys have been previously studied under elevated-temperature com-pressive-creep conditions by the present authors. Electron microscope studies of two-stage replicas from deformed specimens showed no evidence of slip or fracture of the WC particles. These specimens were brought to temperature and allowed to equilibrate prior to the application of the creep load. It was believed that the load-application rate, a crosshead speed of 0.005 in. per min on an Instron universal testing machine, was sufficiently low that recovery within the cobalt matrix was sufficient to limit the deformation to this matrix. A series of experiments was performed to evaluate the influence of loading rate on the deformation of WC-Co alloys. A WC-12 pct Co alloy was selected for these determinations. The average WC particle size was 4.45 p with an average linear separation between particles of 0.59 p. The selected temperature was 800°C and was monitored with a Chromel-Alumel thermocouple attached to the specimen. Testing was conducted in an argon-atmosphere chamber to prevent oxidation of the WC-Co specimens. This chamber was mounted on an Instron universal testing machine equipped to apply the load at a fixed rate. Each specimen was loaded to 110,000 psi compression stress at 0.05 and 0.5 in. per min. The loading rate was monitored prior to insertion of the test chamber and was found to be almost precisely the nominal rate selected. The specimens were raised to temperature and held to equilibrate with the surroundings, and then the load was applied and held for 4 hr to duplicate the exposure time utilized for the creep specimens. The time to reach full load at a crosshead speed of 0.005 in. per min was some 500 sec and was reduced to 50 and 5 sec as the loading rate was increased to 0.05 and 0.5 in, per min, respectively. The model developed by Ansell,' when recovery processes do not occur, considers that fracture or deformation of the dispersed particles is necessary to relieve back stresses on dislocation sources and allow dislocations piled up against particles to sweep out in the matrix to cause plastic deformation; he further states that, even at elevated temperatures, the dispersed-particle deformation is necessary for yielding in the absence of recovery. For the case of straight dislocation segments piled up against a straight barrier, such as the straight-sided WC particles, the shear stress, 7 exerted on a particle is: where h is the spacing between particles (0.59 p), a is the applied stress (110,000 psi), p, is the shear modulus of the matrix (6.7 X lo6 psi at 80O°C), and b is the Burgers vector of the matrix dislocation. From Eq. [I], the shear stress, 7, exerted on the WC particles when no recovery occurs is of the order of 6 X lo6 psi at 800°C. The limiting stress, F, that will
Citation

APA: J. T. Smith J. D. Wood  (1969)  Part VI – June 1968 - Communications - Dispersed-Particle Deformation in WC-CO Alloys

MLA: J. T. Smith J. D. Wood Part VI – June 1968 - Communications - Dispersed-Particle Deformation in WC-CO Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account