PART VI - Binary Eutectic Solidification

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 1771 KB
- Publication Date:
- Jan 1, 1967
Abstract
A new classification of eutectics is proposed, based on tlze entvopies of wzelting of the tuio eutectic phases. The clnssification was used to predict suitable tvansparent analogs of the metallic systems. Experimental confir?nation loas obtained for the theovetical shape of the lamellar solid-liquid interface, fov the fault mechanisms of lanzellar spacing changes, and for the development of low-energy solid-solid boundaries between the lamellae. An explanation is presented to account jov the irvegular and coinplex regular structures zrhich are found in some eritectic systems. FrOM experimental observations, single-phase materials can be divided into two groups according to their solidification characteristics, those that grow as faceted crystals and those that do not. acksonl' showed from thermodynamic reasoning that the type of growth depended on a factor a which was almost thg entropy of melting. Most nonmetals have high entropies of melting (a greater than 2) and grow with crystalline facets. Most metals have low entropies of melting (CY less than 2) and grow almost isotropically with no facets. The authors propose that eutectics may be classified in a similar manner. There are three groups of eutectics, those in which both phases have low entropies of melting, those in which one phase has a high and the other phase has a low entropy of melting, and those in which both phases have high entropies of melting. Lamellar or rodlike structures are formed in systems in which both phases have low entropies of melting. In these alloys dendrites of either phase may be formed, when the alloy is rich in the relevant component. Examples are Pb-Sn, Sn-Cd, Pb-Cd, Sn-Zn, Al-Zn. Irregular, Fig. 14((), or complex regular, Fig. 14(b), structures are formed in alloys in which one phase has a high entropy of melting and the other has a low entropy of melting. Examples are A1-Si, Zn-MgzZnll, Pb-Bi, Sn-Bi. When the alloys are rich in the low entropy of melting phase, dendrites are formed; when the alloys are rich in the high entropy of melting phase, faceted primary crystals are produced. These crystals are sometimes called hoppers or pseudodendrites. In this work the term dendrite will only be used to describe nonfaceted primary crystals. Dendrites are not formed during solidification in high entropy of melting single-phase materials. The third group of eutectics includes alloys in which both phases have high entropies of melting. Each phase grows with a faceted solid-liquid interface. Since most metals do not have high entropies of melting, metallic examples in this eutectic group are rare. However they may occur between some intermetallics and semiconductors or semimetals such as silicon, germanium, and bismuth. Attempts have been made to study eutectic solidification visually by watching the growth process.374 Since metals are not transparent, the observations had to be made on external surfaces. This difficulty can be overcome by using transparent analogs of the metallic systems. As was mentioned earlier, most single-phase compounds have entropies of melting greater than 2 and so grow as faceted crystals. Recently organic materials with entropies of melting less than 2 were investigated.' These materials grow in exactly the same way as the low entropy of melting metals. When the materials are pure, they grow with a solid-liquid interface parallel to an isotherm; when they are impure, cells or dendrites are formed. Since these materials are transparent, have low melting points, and even have cubic structures, they should be ideal for making up transparent analogs of the metallic eutectics. The purpose of the present work was to investigate these organic eutectics and to see whether this quite different series of eutectics could be classified in the same way as the metallic systems. The observations made on the organic alloys are also discussed with reference to the current theories of lamellar growth. Explanations are proposed to account for the structures formed in the other eutectic groups. EXPERIMENTAL Thin cells containing the organic alloys were uni-direction ally solidified on a specially constructed microscope stage.' Uniform growth rates were obtained by moving the cells, with a motor drive, through a fixed temperature gradient, so that the solid-liquid interface remained stationary with respect to the microscope objective lens. The cells were made by fusing two microscope cover slides 7/8 by 7/8 by 1/100 in. together on three sides, leaving a gap of 1 to 3 mils between the slides, and these were filled by surface tension. A preliminary investigation of the phase diagram between two components could be made very rapidly. One side of the cell was filled with component A and the other side with component B. Since only a small amount of mixing could occur every composition from pure A to pure B was present in the cell. When the cell was placed in the temperature gradient a pictorial representation of the phase diagram was obtained. Eutectics, peritectics, "interorganics", and solid -solid transformations could be readily detected. Fig. 1 shows part of a eutectic phase diagram. The Sample was first grown slowly then stopped. The two
Citation
APA:
(1967) PART VI - Binary Eutectic SolidificationMLA: PART VI - Binary Eutectic Solidification. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.