PART V - Effect of Oxidation-Protection Coatings on the Tensile Behavior of Refractory-Metal Alloys at Low Temperature

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. G. Imgram E. S. Bartlett H. R. Ogden
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1571 KB
Publication Date:
Jan 1, 1967

Abstract

Unmodified disilicide coatirigs were applied to sheet-tensile specimens ofCb-Dg3 and Mo-TZM veJractovy- metal alloys. Coating thickness, degree of coating-substrate interdiffusion, and specimen geonzetry (notched and plain were included in the variables studied. Tensile tests were made to determine the ductile-lo-brittle transition temperature. The disilicide coating modestly increased the transition temperatlre of TZM, but had no effect on 043. Neither material condition (recrystallized or stress-velieved) nor specimen geometry (notched or unnotched) significantly altered the effects of coatings on the transilion temperatures of. the alloys. Cracks in the brittle coatings did not propagate into the substrate, and fracture modes appeared to be the same for both un-coated and coated specimens. MOST potential structural applications for refractory metals and alloys involve exposures to oxidizing environments at elevated temperatures. The general lack of oxidation resistance of these metals will require protective coatings to allow fulfillment of their potential. Currently preferred coatings for the oxidation protection of refractory metals are brittle intermetallic aluminides or silicides. These are typically formed on the surface of the refractory-metal substrate by a diffusion reaction between the substrate and a gaseous or liquid medium that is rich in aluminum or silicon. Because of the brittleness of these coatings, they will sustain no plastic deformation at low temperatures. They are frequently cracked by cooling from the coating temperature because of the thermal-expansion mismatch with the substrate alloy. Even if they survive cooling intact, they crack rather than sustain deformation under load at low temperatures. Thus, when a coated refractory metal is strained beyond the elastic limit of the coating at low temperatures, the mechanical environment of the substrate would include both static and dynamic cracks. These might be expected to influence the flow and fracture behavior of the substrate. This could be manifested in an altered fracture mode and/or an increase in the normal ductile-to-brittle transition temperature of the refractory-metal substrate. This paper presents the results of a research program that was conducted to determine the influence of the presence of a brittle surface coating on the low-strain-rate tensile behavior of typical refractory metals at low temperatures. EXPERIMENTAL PROCEDURES Material Preparation. Thirty-mil-thick sheets of molybdenum TZM alloy (Mo-0.5Ti-O.1Zr) and colum-bium D43 alloy (Cb-IOW-1Zr-O.1C) were obtained commercially. These alloys were selected as substrate materials representing two classes of materials important in current refractory-metal technology. The TZM was in the stress-relieved condition, and exhibited a heavily fibered grain structure. The D43 had been processed by the duPont "optimum" fabrication schedule,' and exhibited slightly elongated grains typical of this process. Tensile specimens of two geometries were prepared from these materials: 1) plain specimens with 0.2-in.-wide 1.0-in.-long gage sections; 2) specimens similar to above, but with a 0.06-in.-diam hole drilled in the center of the gage section, providing a stress concentration factor, Kt, of 2.5. The "notch" geometry was selected to represent a typical condition of a rivet hole or other geometric discontinuities as might be encountered in various applications. Machined specimens were degreased, with a final rinse in acetone, prior to the application of coatings. Specimens of each substrate and configuration were pack-siliconizedin a particulate mixture of 80 pct A1203, 17 pct Si, and 3 pct NaF. Specimens were embedded in this mix (contained in graphite retorts) and coated in an electrically heated argon-atmosphere furnace under time-temperature conditions to effect nominal 1- and 3-mil-thick silicide coatings: Coating Thickness, mils Thermal Treatment 0.6 to 1.4 24 hr at 982°C 2.4 to 3.2 48 hr at 1093°C Coating kinetics were similar for both the TZM and D43 substrates. These treatments had little or no visible effect on the substrate microstructure as determined by optical metallography. The coatings on TZM were essentially single-phase unmodified disilicides, while those on D43 showed substantial evidence of modification by proportionate reaction with the respective substrate elements or phases, as shown in Fig. 1. It was recognized that these coatings might not be particularly desirable regarding protective capability. However, it was desired to circumvent possible inter -ferring chemical interaction with the substrate by pack additives such as chromium, titanium, boron, aluminum, and other elements that typify the better protective coatings for these materials.' Thus, the results presented apply specifically to the simple silicide coatings investigated. They may not be rep-
Citation

APA: A. G. Imgram E. S. Bartlett H. R. Ogden  (1967)  PART V - Effect of Oxidation-Protection Coatings on the Tensile Behavior of Refractory-Metal Alloys at Low Temperature

MLA: A. G. Imgram E. S. Bartlett H. R. Ogden PART V - Effect of Oxidation-Protection Coatings on the Tensile Behavior of Refractory-Metal Alloys at Low Temperature. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account