Part IX - The Adsorption of Sulfur on Copper

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. E. Collins P. G. Shewmon
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1884 KB
Publication Date:
Jan 1, 1967

Abstract

A study has been made to determine the sites at which sulfur adsorption occurs on copper surfaces. measurements were made of the relative torques, Ys, at the intersection of twin boundaries with surfaces near the three low-index orientations, i.e., (100), @lo), and 011), over a range of H2S/H2 ratios. HZS concerztvations j'ro~n 3 to 1500pp)n between 830" and 1050°C were used. It is concluded that sulfur adsorption occurved preferentially though not exclusively at edge sites near the (100) and (110) surfaces in the HzS range — 700 Ppm giving rise to negative torques near these orientations. Beyond this HzS range, adsorption occurred at all sites. Near the (111) surface, 7/y little with HzS concentration up to approxiwzately 75pptn. Above this range, the results indicate adsorption is occurring OH both terrace and edge sites. SCIENTIFIC interest in surfaces and their interactions with a gaseous environment dates back to the beginning of the 19th century. The scientific luminaries of that period—Faraday, Maxwell, Rayleigh, Dewar, and Gibbs—were already concerned about such processes. However, it has only been within the past several decades that adsorption on metal surfaces has been actively studied. This increased interest in adsorption has been brought about by the advent of new and improved experimental techniques and apparatus, e.g., ultrahigh vacuum, and field-emission and ion microscopes. However, most of the work done using these techniques has been carried out at low temperatures. When adsorption studies have been made at either low or high temperatures, they usually gave no indication of the particular surface orientations or type of sites on which adsorption was occurring. In the last few years, there have been a series of studies in which the surface tension, y,, and/or its derivative with respect to orientation, 7, have been studied as a function of orientation and atmosphere.'-7 Nearly all of the work on the relative torque,* ~/y, silver annealed in hydrogen and air.6 Recently Winterbottom and Gjostein" have used a modified and more accurate Mykurian method to determine the y plot of gold in hydrogen The only work in which T/~, has been measured over a range of chemical potentials for a given solute, p2, is that of Robertson and shewmon7 on the Cu-0 system. They measured T/Y, vs Po, (10"" to 10- l3 atm) at 1000°C in various mixtures of Hz0 and HZ. From this work they estimated the value of p2 at which one half of the surface sites are occupied with oxygen, pg, as being in the range 10- l6 to 10- l5 atm of oxygen. They also found that increasing Pa increased the magnitude of ~/y, near the (111) and (100) orientations. This indicates that oxygen is not adsorbed preferentially at step edges, but uniformly over all surface sites. In addition, they did one experiment on sulfur adsorption on copper surfaces, which indicated that sulfur adsorption decreases ~/y, near the (100) orientation, while not affecting ~/y, near the (111). This could be interpreted as indicating that sulfur adsorbs preferentially at step edges near the (100). In this paper the primary objective of the work has been to carry out a study of sulfur adsorption on copper surfaces over a range of temperatures and p,. In conjunction with this work, thermal grooving at grain boundaries has been examined as a method of determining the effect of sulfur adsorption on y,. METHODS Ideally, one would like to have information on the quantity of solute adsorbed on a surface and the types of sites at which it is absorbed as a function of p2. The total quantity adsorbed or the surface excess is given by the thermodynamic equation Thus data on the variation of y, with pz indicates the value of p2 at which adsorption becomes appreciable and the quantity adsorbed. The type of adsorption site is more difficult to deduce but information on this can be obtained from the variation of rz with 8, the angular deviation of the surface orientation. This is obtained from the thermodynamic equationlg Data on t and ys as functions of p2 have been obtained by the following methods. 1) Twin Boundary Grooving—By determining the effect of adsorption on the torque, 7, where T is the variation of surface energy, y,, with orientation, it is possible to obtain some indication as to the preferred sites of adsorption. Experimentally, the torque value measured is the relative torque, 7/ys The twin boundary grooving technique suggested by Mykura'' was used in this study to determine near the three low-index orientations— (loo), (110), and (111). Mykura's equation relates 7 /yS to measurements of the di-
Citation

APA: H. E. Collins P. G. Shewmon  (1967)  Part IX - The Adsorption of Sulfur on Copper

MLA: H. E. Collins P. G. Shewmon Part IX - The Adsorption of Sulfur on Copper. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account