Part IX - Structural Studies of the Carbides (Fe,Mn)3C and (Fe,Mn)5C2

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1259 KB
- Publication Date:
- Jan 1, 1967
Abstract
The carbides of approximate composition and Mn have been studied using X-ray diffraction techniques. Those carbides of the type (Fe,Aln)zC ave isostructural with cementite. The cell pararmeters a and c have minimum values at approximately 10 at. pd substitution of manganese for iron; no satisfactory explanation has yet been found for this phenomenon. The carbide fFeMn4)C has a monoclinic unit cell whose dimensions are close to those of ,11,15Cz A neu-troip-dij~ractiot~ study of (F'eAlrz4)C~ reveals that, like MnsCZ, it is isostructural with Pd5Bz. The iron and manganese atoms occupy the palladium atom sites, while the carbon atoms were found to have the same atomic coordinates as the hovon atoms. A neutrorr-diffraction study of indicates that the carbon-atom positions are very close to those occupied in (Fez.,ll/lr~,.3)C. In both carbides studied, tlre iron and manganese atomzs were found to be essentially randomly distributed, although, in the case of (Fe,.811fn1.2)C, it is possible that there may be a slight preference of manganese atoms for- the general (d) positions and a corresponding slight preference of iron atoms for the special (c) positions. It has been found that a complete range of solid solution exists between Fe3C and Mn3C at 1050°C,I although Mn3C becomes unstable when the temperature is reduced to 95O0C,' and can only be retained by rapid quenching. It is also known that a complete range of solid solution exists from Fe5Cz to M~SC~,~ although the stability range of carbides of the type (Fe,Mn)sCz as a function of the relative proportions of iron and manganese is not known. X-ray examinations of Oh-man's carbide3 and Spiegeleisenkristall,~ which have the approximate compositions (Fe3.67Mnl.33)C2 and (Fe3-,Mn,)C, where x lies between 0.4 and 1, respectively, have been made. The following carbides have also been studied: ] The lattice parameters determined during these investigations are listed in Table I. It is seen that carbides of the type (Fe,Mn)sCz have a monoclinic unit cell while carbides of the type (Fe,Mn)3C have an orthorhombic unit cell. It is evident that the variation of lattice parameters with manganese content is not linear for carbides of the type (Fe,Mn)3C. The coordinates of the atoms in (Fe2.7Mno.3)C have recently been determined by single-crystal analysis., The fractional atomic coordinates have been shown by Fasiska and jeffrey to be in good agreement withj those deduced from an earlier analysis of Fe3C by Lipson and etch.' However, it was impossible to determine whether iron and manganese atoms occupied ordered positions because of the small difference between the atomic scattering factors of iron and manganese. The atomic positions in Mn5Cz (Refs. 8 and 9) and Fe5C2 (Refs. 7 and 8) have been obtained only by comparisons made with the isostructural compounds P~SB~.' Since X-ray diffraction techniques were used in these investigations, accurate positioning of the carbon atoms, which have a low atomic scattering factor, was difficult. No attempt has been made to determine the atomic positions in the other carbides previously studied. It was felt that an investigation of the lattice parameters of a number of intermediate carbides of the types (Fe,Mn)sCZ and (Fe,Mn)& would be of interest. It seemed likely that a neutron-diffract ion study of such carbides would indicate whether ordering occurred between the iron and manganese atoms because of the large difference between the neutron-scattering cross sections of iron and manganese. It also seemed probable that such an investigation would provide a determination of the atomic coordinates of the carbon atoms. I) EXPERIMENTAL DETAILS Specimens, each weighing approximately 20 g, were carefully prepared according to the following proportions: The components were 500-mesh powders of 99.995 pct purity iron and spectroscopically pure carbon and a 200-mesh powder of 99.995 pct purity manganese. The component powders were intimately mixed by prolonged shaking, then each specimen was inserted into a spot-welded cylindrical container of tantalum foil, whose end was closed but not sealed. Each specimen in its envelope was then sintered at 1050° C for 24 hr in a thin-walled evacuated quartz capsule, such a time having been previously found sufficient for equilibrium to be attained.' Each specimen was then quenched in order to attempt to retain the high-temperature phase, as the literature indicates that transformations may occur on cooling. Debye-Scherrer X-ray photographs were taken of each specimen using a 114.6-mm-diam camera, Fig. 1, patterns 2 to 6. The exposure time was 6 hr using filtered iron radiation at a tube voltage of 40 kv and a tube current of 12 ma.
Citation
APA:
(1967) Part IX - Structural Studies of the Carbides (Fe,Mn)3C and (Fe,Mn)5C2MLA: Part IX - Structural Studies of the Carbides (Fe,Mn)3C and (Fe,Mn)5C2. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.