Part IX – September 1969 – Papers - The Low-Cycle Fatigue of TD-Nickel at 1800°F

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 534 KB
- Publication Date:
- Jan 1, 1970
Abstract
Re crystallized TD-nickel mi-2Th0,) in both coated und uncoated conditions was fatigued at 1800°F at total strain ranges varying .from 0.2 to 0.75 pct. The fatigue life of uncoated inaferal, Nf, was related to the total strain range, ?eT, by (2Nf/021AeT = 0.014. A duplex Al-Cr pack coating increased the fatigue life by about a factor of two. The cracks that led to failure in both coated and uncoated material were initiated at the outer surface, indicating that the mechanical properties of the surface layers were important in determining fatigue life. Crack propagation and subsurface crack initiation in the TD-nickel occurred preferentially at grain boundaries with cavitation at thoria particle-matrix interfaces an integral part of the grain boundary fracture process. The importance of both the grain morphology developed during thermome chanical processing of TD-nickel and the distribution of thoria particle sizes to fatigue resistance are discussed. THE fatigue properties of only a few dispersion-strengthened metals have been studied at temperatures 0.5 Tm;1,2 among these have been lead and aluminum containing oxide dispersions. TD-nickel is a material of interest for application in aircraft gas turbine engines, but little fundamental information is available on its behavior under cyclic loading conditions. In this study, the low-cycle fatigue properties of TD-nickel were determined at 1800°F with emphasis on the 101-lowing; 1) the relation of the grain morphology produced during thermomechanical processing to crack initiation and propagation; 2) the role of thoria parti-cles in the fracture process; and 3) the effect of an oxidation resistant coating on fatigue life. I) MATERIAL AND EXPERIMENTAL PROCEDURE The TD-nickel was supplied by DuPont as a 5/8-in. thick plate which had been subjected to a proprietary series of thermomechanical treatments with a final anneal at 2000°F for 1 hr in hydrogen. The composition of the material is given in Table I. At the test temperature of 1800°F, the 0.2 pct offset yield stress was 15,000 psi, and the elongation and reduction in area were 4.6 and 3.0 pct, respectively. The microstructure of this material has been previously described.' Briefly, it consists of an array of lath-shaped grains, about 0.15 mm in thickness, with the long dimension of each grain parallel to the primary working direction, Fig. 1(a). The presence of very small annealing twirls, Fig. l(b ), together with the absence of extensive dislocation networks, Fig. L/C), indicated that the material was in the recrystal- Table I. Composition of TD-Nickel ThO2 2.3 vol pct C 0.0073 wt pct lex 0.01 wt pct Cr 0.01 wt pct Cu 0.004 wt pct S 0.001 wt pct Ti <0.001 wt pct Co <0.01 wt pct Ni bal lized condition. Commercial TD-nickel sheet has a similar grain size and shape, but unlike the present material is not recrystallized as evidenced by the absence of annealing twins and the presence of a well-developed dislocation substructure.4 The plate material had Young's moduli in the rolling direction of 22 x 106 psi and 13 x 106 psi at room temperature and 1800°F, respectively, indicating a texture with a strong {100}<001> component in agreement with previous observations on recrystallized TD-nickel sheet.596 The 2.3 vol pct of thoria particles were uniformly distributed although some clustering and stringering of larger particles was occasionally seen. The average diameter of the particles was 450 and the calculated mean planar center-to-center spacing was 2100Å. Two specimens were coated with a duplex A1-Cr pack coating. The coating was somewhat nonuniform from one position to another along the gage length. An area of the coating after testing is shown in Fig. 2. Electron microprobe analysis revealed the following zones in the various lettered regions indicated in Fig. 2: A) a bcc matrix of B-NiA1 with some chromium in solid solution along with a fine dispersion of a chromium-rich second phase which was probably precipitated during cooling from the test temperature to room temperature; B) fcc y'-Ni,Al with some chromium in solid solution; C) porosity; D) a two-phase mixture of a chromium-rich solid solution containing nickel and aluminum and a small volume fraction of a nickel-rich solid solution having approximately the same composition as the immediately adjacent portion of region E, E) the TD-nickel substrate containing chromium in solid solution to a depth of 5 to 10 mils. As expected from the nature of the diffusion processes involved,7 the thoria particles were present only up to the layer of porosity, region C, Fig. 2. The measured thickness of the coating proper, zones A to D, after testing was 1 to 2 mils. The specimen design and testing techniques have been previously discussed.' Stressing was axial and parallel to the lath-shaped grains (i.e., parallel to the rolling direction). The total strain range was controlled between zero and a maximum tensile strain varying from 0.2 to 0.75 pct. (The test at 0.2 pct total strain range was switched to load control at 1030 cycles at which point the peak tensile and compres-
Citation
APA:
(1970) Part IX – September 1969 – Papers - The Low-Cycle Fatigue of TD-Nickel at 1800°FMLA: Part IX – September 1969 – Papers - The Low-Cycle Fatigue of TD-Nickel at 1800°F. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.