Part IX – September 1968 - Papers - The Effect of Preferred Orientation on Twinning in Iron

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 419 KB
- Publication Date:
- Jan 1, 1969
Abstract
The influence of preferred orientation on the incidence of defbrtnation tuinning has been studied. High-purity iron with almost vandonz grain orientation was cotnpared uitll iron of the sa)ne grain size and composilion lza,ing a strong (110) fiber texture. As expected from published work on single crgslfls, /he ))lean stress for the onset of luitzning-, and the l,olu)nt. fraclion of twinned nzaterial obserlled in lension differed fron the 1-a1ue.s it2 co?nPression for tnolerial with a slrong texlure. The llinning stress of "rctndorrl " )zalerial did not 17ary with the sense of the aPPlied unin.via1 stress, but sirprisinglg the incidence of 1c)i)zning- was about three 1i))zes greater ill conzp?'ession Illon in lension. These results (Ire attributed entirely to ovienbation and may be nderslood in ler?ns of the shear slresses acting on the allowed twinning syster)is. J. HE twins most commonly formed in bcc metals may be described as regions of the crystal in which a particular set of (112) planes is homogeneously sheared by 0.707 in the appropriate ( 111) direction. A similar twin-related crystal could be produced by a shear of 1.414 in the reverse (111) direction but twinning by this large displacement has never been reported. Thus, twinning is unidirectional and a shear stress which produces twinning does not do so when its sense is reversed. The sense of a shear Stress is reversed when the loading is changed from tension to compression, or vice versa. Consequently, for a given orientation of a crystal relative to a uniaxial stress, only a fraction of the twelve (112) twinning systems are geometrically capable of operating in tension, and the remaining systems may operate only in compression. Therefore, when twinning is involved, there are expected to be differences in behavior between crystals tested in uniaxial tension and those tested in compression. This has been verified experimentally by Reid et 01.' and Sherwood el al.,' although a critical stress criterion was not encountered. Furthermore, twinning stresses in colmbium," tungten, tantalum,' irn,' i-Fe,\ nd molybdenum7 single crystals have been shown to depend critically on orientation, although again twinning did not occur at a critical value of the macroscopic shear stress. However, when twinning occurs, it generally does so on the most highly stressed systems, 1--4'6'8'9 implying that the stress level does have some relevance to twin formation. In view of the large orientation dependence of twinning in bee single crystals, it might be expected that such an effect would be present in poly crystalline material which possesses a recrystallisation texture. Indeed, riestner" showed that the twinning stress in tension is very orientation-sensitive it1 <'grain-oriented, silicon-iron;" this material possessed a very strong t c m^ii a nnr x_____k . i-_ii__ ri_______j. _x r»i_._:__i preferred orientation obtained by secondary recrystallisation. Reid et a/.' observed a marked difference in the tensile and compressive yield stresses of polycrys-talline columbium which was rationalised in terms of the effect of a preferred orientation on twinning. No other such illformation is known to the authors. Several investigations of twinning in polycrystalline bcc metals have been reported in which the possible existence of a preferred orientation was not even mentioned. It is the purpose of this paper to show that there is a strong effect of texture on twinning in polycrystalline iron, and to poilt out the difficulty in eliminating preferred orientation in recrystallised metals. 1. EXPERIMENTAL METHOD Material and Specimen Preparation. Low-carbon, high-purity iron was obtained from the National Physical Laboratory in the form of $-in. diam rod which had been cold-swaged from a diam of 1 in. The composition of the material is given in Table I. The as-received bar was cold-swaged directly to 0.185 in. diam from which cylindrical tensile and compression specimens were machined. Specimen geometry is illustrated in Fig. 1. The gage length was 0.30 in. long and 0.10 in. diam; it should be noted that, apart from the extra heads which are necessary for tensile loading, the geometry and dimensions of the two types of specimen are identical. The specimens were heat treated either by sequence A or B outlined in Table 11. The essential difference between these two treatments is that in one case the material was repeatedly cycled through the y- to a-phase change in order to produce grains of almost random orientation ("random" iron)
Citation
APA:
(1969) Part IX – September 1968 - Papers - The Effect of Preferred Orientation on Twinning in IronMLA: Part IX – September 1968 - Papers - The Effect of Preferred Orientation on Twinning in Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.