Part IX – September 1968 - Communications - Thermodynamics of Carbide Formation and Graphite Solubility in the CaO-SiO2 Al2O3 System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. H. Swisher
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
326 KB
Publication Date:
Jan 1, 1969

Abstract

The solubility of graphite in CaO-S2O2-Al,O3 slags was measured by equilibrating slag samples with graphite crucibles and CO gas. Carbon contents as high as 2 ut pct were obtained in CaO-saturated, CaO-A1,O3 slags, and 1.3 wt pct in slags of the composition CaO.Si0,. Although the observed conditions for Sic formation were in agreement with those predicted from thermodynamic data, CaC, was found to form at a lower temperature than predicted frotn thermodynamic data. From measurements of the equilibrium carbon content as a function of CO Partial pressure, it was found that carbide ions dissolve in CaO-A12O3 melts with a valence of minus two. The carbon content increased with CaO concentration in Ca0-Al,O3 melts and increased with SiO, content along the CaO'AlO3-CaOSi0 join in the ternary system. When solid CaC2 was added to CaO-A12O3 and CaO-SiO2-A12O3 slags, it was found that one of the oxides in the slag was reduced by the carbide (Al2O3 in the forrner and SiOz in the latter). In electric furnace steelmaking, a double-slag practice is frequently used to meet alloy specifications. Initially a flush slag, which is oxidizing in nature, is used to remove phosphorus and carbon from the steel bath. Later in the refining period, the flush slag is replaced by a highly reducing carbidic slag. When calcium carbide is formed in or added to a finishing slag, the slag is effective as a desulfurizing agent and also permits alloying elements such as chromium, vanadium, and tungsten to be added to the slag in the form of oxides. The oxides are readily reduced by calcium carbide, thereby minimizing the use of expensive ferroalloys. More work has been done on the thermodynamics of silicon carbide in slags than on calcium carbide. Baird and alor' and Kay and alor' determined the free energy of formation of Sic by measuring the partial pressure of CO in equilibrium with solid silica, silicon carbide, and graphite. Using a similar technique, they determined SiOz activities in CaO-SiOz and Ca0-Si0,-A1203 slags. Rein and chipman3 also determined the free energy of formation of Sic using slag-metal equilibrium measurements. A literature survey has uncovered only one experimental study of the behavior of CaC, in slag systems. Shanahan and cooke4 report the results of some preliminary experiments on the solubility and stability of CaC, in a CaO-A1,03 and a Ca0-Si0-A1,03 slag at a temperature of about 1500". The carbon solubility as CaC, in a slag containing 50 pct CaO and 50 pct A1203 was reported to be 0.6 pct. They also review earlier work on the binary CaO-CaC, system. A eutectic exists in this system, but various investigators disagree on the eutectic temperature and composition. eal has given an explanation for carbide furnace erruptions in terms of the thermodynamic properties of CaC,; his analysis is not based on experimental data, but on compiled data for the free energies of formation of CaC, and CO.' , These data for steel-making temperatures are all extrapolated from the results of low-temperature measurements. In the experiments described in this paper, slag samples were equilibrated with graphite crucibles and with mixtures of CO and argon or with CO gas at 1 atm total pressure for measurement of the carbon solubility. Most of the work was done on Ca0-A1203 binary slags, although in some experiments CaO-SiO, and Ca0-Si0,-A1,03 slags were used. EXPERIMENTAL Slag samples of the desired composition for the solubility measurements were obtained by blending pre-fused master slags. The master slags were prepared by fusing mixtures of reagent-grade CaC03 with either A1,03 or Si0, in a graphite crucible. The master slags were crushed, then decarburized in air in a muffle furnace at 1200O C. A schematic diagram of the apparatus is shown in Fig. 1. The source of carbon for the solubility meas-
Citation

APA: J. H. Swisher  (1969)  Part IX – September 1968 - Communications - Thermodynamics of Carbide Formation and Graphite Solubility in the CaO-SiO2 Al2O3 System

MLA: J. H. Swisher Part IX – September 1968 - Communications - Thermodynamics of Carbide Formation and Graphite Solubility in the CaO-SiO2 Al2O3 System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account