PART IV - Transverse Striations in Bi-Sb Alloy Single Crystals

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. M. Yim
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
2481 KB
Publication Date:
Jan 1, 1967

Abstract

Experimental results are presented which indicate that transverse striations in horizontal zone-leveled Bi-Sb alloy crystals are due to irregular growth rate resulting from thermal fluctuations in the melt (Iring gowth. Thc thermal fluctutations arose from two different sources. The first type was brought about by periodic fluctuations in the furnace temperature. The second type can be attributed to turbulent therrrol conlcclion in the trzelt near the solid-liquid inteyace. Tile arrzplitlcde ond fvequency of the tetiperaticre fluctlrations vesultity from llle lhevnal con1,ecrrell. The striation spacings in Lhe crystals covvelale well with the periodicity 0.f the tempevature flueluatiors. Altliough the strialiors represenl corrlpositiozul inhoiHogeneity oh a rzicroscule, less than f.z cil. be1 S6 in Best's as deterrirzed by electron-pro be chalq'sis, the slriations roerre fbund to ILUL' no rrleusuanble effect on electical vesistirity rwr on weak field macgnetoresistance of. the Bi-Sb a1lu.y in the ternpevutue ),unge 4.Polo 300°K. DURING the course of an investigation on the horizontal growth of semimetals,' it was found that crystals of Bi-Sb alloys contained many closely spaced parallel arrays of striations. These striations occurred perpendicular to the growth direction and parallel to the solid-liquid interface. We shall refer to them as transverse striations, or just striations'', to distinguish them from lineage substructures or longitudinal striations which form parallel to the growth direction and have been known to be associated with cellular structures.' Similar transverse striations have been reported previously to occur in other materials prepared by horizontal growth: metals,4 semiconductors,5 as well as their alls. - Various methods of crystal preparation have apparently little effect on the occurrence of the transverse striations. They form whether the crystals were grown by the vertical Czochralski technique, withe1' or without'3- rotation, or by the horizontal zoning methd.- Thus, the transverse striations are not limited to any one class of materials, nor to any particular method of preparation. It is likely, therefore, that all of the observed transverse striations may have some common cause. Previously, workers agreed that periodic changes in the growth rate bring about the striations. However, no agreement exists as to the origin of the growth-rate fluctuations. Some attributed the discontinuous growth to a purely external cause, such as fluctuations in the furnace temperature, jerky motions in the crystal pulling mechanism, or a nonsymmetrical temperature distribution in the melt (in the case of crystals grown by the Czochralski technique with rtation). Others looked for the cause in some fundamental property of the growth process itself. For instance, a certain degree of supercooling is required to initiate growth from the melt. But, with further growth, the degree of supercooling decreases because of the liberation of the heat of solidification at the solid-liquid interface. Thus, crystal growth would be brought to a halt until sufficient supercooling is resotred and the cycle begins again.3'11 According to this model, periodic fluctuations in the melt temperature should exist at the solid-liquid interface. Since the periodic fluctuations in growth rate would result in changes in the segregation coefficient of solute atoms, crystals containing the transverse striations may, in some cases, show a periodic impurity fluctuation along the length, resulting in a degradation of electrical properties. The resistivity striations in doped germanium'9-10 or lnsbB are well-known examples of this microsegregation. The present work was undertaken to explain the exact origin of the transverse striations, and to assess the extent of their effect on chemical homogeneity as well as on electrical properties of Bi-Sb alloy crystals. Results from our previous study of the crystal growth of Bi-Sb alloys1 indicated that the transverse striations may arise from the temperature fluctuations in the melt during growth. This paper will show that the melt temperature fluctuations are indeed responsible for the occurrence of the transverse striations. I) EXPERIMENTAL Although the transverse striations have been observed in all slow-grown Bi-Sb alloys across the entire compositional range, we selected a composition, Big3Sbs, for the present study in view of the extensive data available on the crystal growth of this alloy from a previous study.' High-purity bismuth and antimony, both a 6-nine grade by the manufacturer's emission spectrographic analysis, were used throughout. Independent mass-spectrographic analysis showed, however, that the starting materials were more nearly a 5-nine grade. each containing metallic impurities of approximately 10 ppm atomic. In zone-leveled Big5Sb5 alloys, the total metallic-impurity content was slightly lower, about 7 ppm atomic, indicating that some degree of purification was achieved during the growth. None of the electrically active impurities, such as tin and lead (acceptors) and tellurium and selenium (donors), were present in significant quantity in undoped Bi95Sb5. Typical analysis of the undoped Bi95Sb5 alloy is shown in Table I. Nonmetallic impurities, such as carbon and oxygen, were detected, sometimes as much as 100 ppm, in both the starting materials and the zone-leveled alloys: but the data were only qualitative. Temperature fluctuations in the melt were monitored over 1 or more days by means of a 5-mil chromel-
Citation

APA: W. M. Yim  (1967)  PART IV - Transverse Striations in Bi-Sb Alloy Single Crystals

MLA: W. M. Yim PART IV - Transverse Striations in Bi-Sb Alloy Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account