PART IV - The Kinetics of Beta-Phase Decomposition in Niobium (CoIumbium)-Zirconium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1485 KB
- Publication Date:
- Jan 1, 1967
Abstract
Aboue 950°C the Nb-Zr system consists of a completely miscible bcc solid solution, commonly called the phase. Between 950 and 600°C, and between 20 and 85 pct Nb, the phase deconlposes, after sunciently long times, into two bcc solid solutions. The pct Zr alloys are conveniently descibecl with T-T-T (time-temperature-transformation) curves having a nose at about 2 hr at 700°C. The reaction rate varies only slowly with zirconium content and negligibly with oxygen contanzination; it is speeded up by a factor of 10 to 15 by 90 pct cold ulork and slowed dou by n factor oj 10 to 30 by a two-hundrecljold increase in grain size. Nb-r alloys with compositions between 40 and 85 pct Nb have been the basis for the majority of commercially important superconducting materials. In part because of their commercial promise, more is known about these alloys than about most other high-field superconducting materials. At the same time, there is considerable disputed or incomplete metallurgical information. For example, although Rogers and tkins' indicate a monotectoid reaction at approximately 600°C and a two-phase 01 + 0, field extending between 20 and 85 pct Nb and to a maximum of 95OGC, erhout' has reported that this entire region would be a single homogeneous B were it not for oxygen contamination. Again, although it has been shown that relatively short-time heat treatments in the vicinity of 700CZ significantly improve the ability of short wire samples to carry high currents in high magnetic fields at 4.2K, these observations have never been fully correlated with the structural change or changes occurring during the anneal. We intend to investigate in detail the effect of metallurgical variables, including heat treatment, on the superconducting properties of hard superconductors. To verify that our experimental techniques are valid and to establish a relative standard against which other materials may be measured, we feel it advisable to know the behavior of the Nb-Zr alloys under a variety of processing conditions. As an initial step toward this goal, we have determined in detail the kinetics of the transformations in Nb-Zr alloys. EXPERIMENT A number of problems had to be solved before beginning any fruitful work on the reaction kinetics in this system. While solving some of these problems, either by chance or by design, small amounts of information were obtained about alloys containing 40, 50, 60, 65, 67, 70, and 75 pct Nb, bal. Zr. In addition, a large range of grain sizes and a range of temperatures considerably greater than the range indicated by Rogers and Atkins phase diagram were examined. We will, however, report in detail only the results obtained for the Nb + 33 pct Zr and Nb + 25 pct Zr alloys at three grain sizes, two levels of oxygen contamination, and the temperature range 550 to 950°C. These data are most complete, but the other data are sufficiently complete to indicate the kind and magnitude of the variation of the transformation kinetics outside this range. The first and most difficult problem encountered in this inquiry was one of sample homogeneity. When Nb-Zr alloys are arc- or electron-beam-melted on a cooled copper hearth, solidification is sufficiently slow that there is appreciable coring in the cast structure and a large variation of grain size across the button thickness. Both these factors significantly affect the apparent reaction rate in the system. A two-step solution to the problem was attempted; an arc-melting and drop-casting technique has been developed by conald that greatly reduces the as-cast grain size and virtually eliminates coring segregation. Ingots made in this way exhibited no detectable (3 pct maximum) zirconium segregation. Before it was evident just how good this technique was, we attempted to supplement it with rather long-time, high-temperature annealing of the cast ingots. This annealing was carried out in evacuated and sealed (seal-off pressures < 1.0 x 106 torr) quartz capsules lined with tantalum foil at 1400 to 1450 C for 8 to 72 hr. There were two principal effects of this treatment: the grain size increased to a fairly uniform 150 p, and the surface and all grain boundaries near the surface acquired a film of a second phase, tentatively identified as an oxide (possibly additionally contaminated with silicon). There was no evidence that this 1400 C treatment had affected the zirconium segregation. High-temperature annealing was subsequently used only for grain-size control, but anneals of longer than 4 hr at temperatures greater than 1000°C were performed in dynamic vacuums (pressure no greater than 1.0 x lo torr). Any contamination resulting from these treatments was well below the limits of detection of our techniques. All samples, as cast, were cold-swaged to at least 85 pct reduction in area. The samples called cold-worked were tested as swaged. The minimum re-crystallization anneal for these alloys was about 12 hr at 1050 C; this produced an equiaxed grain diameter of about 4 to 8 P. Annealing for 4 hr at 1450°C produced a grain size of about 80 to 150 p; and annealing for 4 hr at 1650aC, close to the melting point of many of these alloys, produced a grain size of 0.5 to 1.0 mm. At all temperatures, the larger grain size was
Citation
APA:
(1967) PART IV - The Kinetics of Beta-Phase Decomposition in Niobium (CoIumbium)-ZirconiumMLA: PART IV - The Kinetics of Beta-Phase Decomposition in Niobium (CoIumbium)-Zirconium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.