PART IV - Papers - Phase Relations and Thermodynamic Properties for the Samarium-Zinc System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. Chiotti J. T. Mason
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1407 KB
Publication Date:
Jan 1, 1968

Abstract

Ther?nal, X-ray, metallographic, and vapor pressure data were obtained to establish the phase diagram and standard free energy, enthalpy, and entropy of formation for the compounds in the Sw-Zn system. Four compounds, SmZn, SmZn2 , SmZn4.s, and SmZn8.5, melt congruently at 960°, 94Z°, 908°, and 940°C, respectively. The cornpounds SlnZns, Sm3Znll, and SnzZn7.3 undergo peritectic decomposition at 855", 870°, and 890C, respectively. Another compound of uncertain stoichiometry, SmZn11, undergoes peritectic decomposition at 760°C. Four entectics were observed with the following compositions in weight percent zinc and eutectic tenzperatures in degrees Centigrade: 12 pct, 680°C; 36 pct, 890°C; 58 pct, 850°C; and 72 pct, 900°C. An allotropic transformation and a composition range were observed for the SmZnz compound. The transfor)nation varies from 905" to 865°C as the zinc content increases from 16.0 to 48.5 wt pct, respectively. The free energy of formation of the compounds at 50PC varies between -15.9 kcal per mole for SmZn to -51.1 kcal per mole for SmZn,.,. Corresponding enthalpies vary between -19.2 to -78.3 kcal per mole. The ther-modynamic properties for the liquid alloys are described by the relations: A search of the literature revealed very little information on the Sm-Zn system. Chao et al.&apos; as well as Iandelli and palenzonai have reported the structure of SmZn to be cubic B2 type and Kuz&apos;ma et al3. have reported the structure of -sm2zn17 to be of the Th2Ni17 type. The purpose of this work was to establish the phase diagram of this system, to determine the zinc vapor pressure over the solid two-phase regions of the SYstem, and to calculate the thermodynamic properties of the compounds. MATERIALS AND EXPERIMENTAL PROCEDURES The metals used in this investigation were Bunker Hill slab zinc 99.99 wt pct pure and Ames Laboratory samarium. Analysis of the samarium by chemical, spectrographic, and vacuum-fusion methods gave the following average impurities in ppm: Nd, <200; Eu, <100; Gd, <100; Y, <50;Ca, 225; Ta, 400; Mg, 10; Cu, ~50; 0, 175; H, 20; and N, 15. The elements Fe, Si, Cr, Ni, Al, and W were not detected. The samarium was received as sponge metal and was kept under argon except when being cut with shears and when being weighed. Tantalum was found to be a suitable container for alloys with zinc contents up to the Sm2Znl, stoichio-metry. At higher zinc contents the grain boundaries of the tantalum containers were penetrated by the alloy and the containers failed during prolonged annealing. About 25 g of massive zinc and samarium sponge were sealed in tantalum crucibles equipped with thermocouple wells. These crucibles were in turn sealed in stainless-steel jackets. All closures were made by arc welding under an argon atmosphere. The samples were equilibrated in an oscillating furnace and in some cases were given various heat treatments in a soaking furnace. After appropriate heat treatment the steel jackets were removed and the alloy subjected to differential thermal analysis. The apparatus was calibrated against pure zinc and pure copper and found to reproduce the accepted melting points within 1°C. Alloys were subsequently subjected to metallographic examination and those of appropriate compositions were used for X-ray diffraction analysis and for zinc vapor pressure determinations. The vapor pressures were determined by the dewpoint method. Both the differential analysis and dewpoint measuring apparatuses have been described in earlier papers.4, 5 All alloy samples were etched with Nital (0.5 to 3 pct nitric acid in alcohol) except the samarium-rich alloys. These more reactive alloys were electro-polished in a 1 to 6 pct HClO4 in methanol solution at -700c at a potential of 50 v. EXPERIMENTAL RESULTS Phase Diagram. The results of thermal analysis are indicated by the points on the phase diagram, Fig. 1. Eight compounds and four eutectics were observed. The composition of the compounds and their melting or peritectic temperatures are given on the phase diagram. The four eutectic compositions in wt pct zinc and eutectic temperatures in % are: 12 pct,- 680°C; 36 pct, 890°C; 58 pct, 850°C; and 72 pct, 900°C. The stoichiometry of the most zinc-rich compound is still uncertain, but is very likely either SmZnll or SmZnlz. However, to simplify the presentation which follows it will be referred to as SmZnll. As shown on the phase diagram the phase regions for some of the samarium-rich alloys have not been unambiguously established. A sample of pure samarium was observed to transform at 924°C and to melt at 1074"C, in good agreement with corresponding val-
Citation

APA: P. Chiotti J. T. Mason  (1968)  PART IV - Papers - Phase Relations and Thermodynamic Properties for the Samarium-Zinc System

MLA: P. Chiotti J. T. Mason PART IV - Papers - Phase Relations and Thermodynamic Properties for the Samarium-Zinc System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account