Part IV – April 1969 - Papers - The Measurement of Hydrogen Permeation in Alpha Iron: An Analysis of the Experiments

The American Institute of Mining, Metallurgical, and Petroleum Engineers
O. D. Gonzalez
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1771 KB
Publication Date:
Jan 1, 1970

Abstract

Existing measurements for the steady-state permeation of hydrogen in a iron above 100°C have been examined for contribution of determinate errors. The analysis leads to a recommended equation for the permeability of hydrogen in a iron: o= (2.9 ±0.5) x 10-3 exp - (8400 ± 400)/RT cu cm (ntp H2) cm-1 sec-1 atm-1/2 THE permeability of a iron to hydrogen has been the subject of numerous investigations over the past 40 years, and at present there are thirteen sets of published results for the rate of steady-state permeation of hydrogen in a iron above 100°C. The numerical values in each set of results are entirely self-consis-tent, but the spread among the sets is too large to be attributed solely to experimental error, i.e., to error other than in the specimen itself. Several reasons have been advanced to explain the disparities, but to date the relative importance of experimental inaccuracy to the spread remains uncertain. The purpose of this report is to examine in detail the sources of determinate errors inherent in the experiments and to assess as far as possible the contribution of the errors to the results. The ultimate goal is the selection of values for the permeability and heat of permeation most nearly representative of hydrogen in a iron. The analysis is limited to those experiments in which the permeation rate was observed at steady state—a condition in which traps for hydrogen within the metal are filled to a fixed level15 so that the trapping mechanism is not reflected in the rate of passage of the gas. Furthermore only data are examined in which surface processes are judged to have little or no influence on the flow. It is hoped with these restrictions to obtain values of the permeability and the heat of permeation which will be as closely related as possible to the mechanism of lattice diffusion. I) DEFINITION OF TERMS; UNITS In this report the data for permeation are given in terms of a coefficient oj permeability, ?, which is defined by the equation: jt=?A/?x{p1/2-po1/2) [1] where jt is the total flow of gas normal to the surface of a membrane of planar geometry, e.g., a disc, of area A and thickness ?x; pi and po are the pressures in the input and output sides, respectively. For flow radial to the walls of a membrane of cylindrical geometry, e.g., a tube, the corresponding equation is: where 1 is the length of the cylinder, and ri and ro are the inner and outer radii, respectively. The flux normal to the surface is given by Fick's law: j= -D(dc/dx) [3] At steady state the concentration gradient will be constant, and integration of Eq. [3] gives for the total flow through a disc of area A and thickness Ax: h =-DA(co - ci) [4] where c, and ci are the concentrations of solute at the output and input surfaces, respectively. When surface control is absent, co and ci are given by Sievert's law c = Kp1/2, and substitution therewith into Eq. [4] gives directly Eq. [I] where ? = DK. Integration of Fick's Eq. [3] in cylindrical coordinates will give Eq. [2] where again ? = DK and is thus shown to be independent of geometry (provided that surface control is negligible). The coefficient of permeability, or simply the permeability,* must be expressed in proper units. In *The term permeability will refer in this report always to the coefficient defined above; permeation will be used to specify the general phenomenon of gas passage through a membrane. this report ? will be expressed in the units of cu cm (ntp H2) cm-1 sec-1 atm-1/2. The variations of D and K with temperature are given by D = Do exp(-Ea/RT) and K = KO exp(-?Hs/RT) where E, is the activation energy for diffusion and AH, the heat of solution, each usually expressed in calories per mole of solute. The variation of permeability with temperature will thus be given (for conditions where surface control is negligible) by ? = ?o exp(-?Hp/RT) where ?0 = DoKo and ?Hp = Ea + ?Hs. The units of ?0 are the same as those of 6, and??Hp will be expressed in calories per mole H. 11) SUMMARY OF PERMEABILITY RESULTS Table I gives the values reported to date for the permeability of H2 in a iron in terms of ?o and ?Hp. Except where noted the parameters listed were taken directly from the numbers reported by the various investigators with only a change in units. The temperature limits within which the listed ?o and ?Hp hold are given in column 7; the limits marked in parentheses in this column indicate the entire temperature range covered in each investigation. The listed values of ?o and ?Hp are those giving a linear plot of ln? against T-1 at the higher temperatures in each set of measurements, and thus presumably represent the case for which surface control was negligible. Column 6 gives values of 9 at a representative tem-
Citation

APA: O. D. Gonzalez  (1970)  Part IV – April 1969 - Papers - The Measurement of Hydrogen Permeation in Alpha Iron: An Analysis of the Experiments

MLA: O. D. Gonzalez Part IV – April 1969 - Papers - The Measurement of Hydrogen Permeation in Alpha Iron: An Analysis of the Experiments. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account