PART IV - A Study of the Effect of Deformation on Ordered Cu3Pt

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. J. Wert S. G. Cupschalk F. A. Dahlman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1342 KB
Publication Date:
Jan 1, 1967

Abstract

Studies have been undertaken to determine the indicidual effects of particle size, degree of long-range ovder, antiphase domain size, and root mean square stran on the microhardness and yield strength of ordered alloys. Dnta have been analyzed for Cu3Pt initzally ordered to a value of 0.82 and after deformations of 1 and 6 pct. It was observed that deformation fleatly reduced the degree of long-range order. Furtherrnore, wztkin this range of relatively small deforntntlons, the average particle size changed very little while the antiphase domain size was greatly reduced. Smultaneosly, the mcrohardness changed by a factor of two durzng the deforrtation process. PREVIOUS studies have reported some of the effects of cold work on the broadening of X-ray diffraction peaks. These investigations were performed on powder and wire samples representing both ordered and disordered states; i.e., the specimens were initially studied in a severly cold-worked condition. By comparing the difference in line shape between the annealed and cold-worked peaks, fundamental information was obtained concerning particle size, strain distribution in different crystallographic directions, degree of long-range order, and change in antiphase domain size. Considerable theoretical work has been done concerning the analysis of diffraction data obtained from cold-worked metals. Stokes' expressed the change in diffraction profiles in terms of Fourier coefficients. Much of the work in this area has been summarized by warren2 in an extensive review article concerning the analysis of plastic deformation by X-ray diffraction. Cohen and Bever3 applied these techniques in studying the effects of cold work on alloy systems exhibiting long-range order. They utilized the Fourier coefficients of fundamental peaks in conjunction with those of the superlattice peaks to determine the change in antiphase domain size. Little work of this nature has been reported for ordered systems that have undergone small degrees of plastic deformation. The purpose of this investiga-tion was to determine the effects of small deformations in such a material with respect to particle size, strain distribution in various crystallographic directions, antiphase domain size, degree of long-range order, and hardness. EXPERIMENTAL PROCEDURE CusPt was used for the initial investigation since the order-disorder transformation takes place with- out a change in crystal structure. The transformation is readily detectable via X-ray diffraction techniques due to the large difference in the scattering factors of copper and platinum. Additionally, the alloy is relatively low melting (approximately 1300°C) and is easily deformable in both the ordered and disordered states. 1) Specimen Preparation and Cold Working. A 100-g, 12-in. diam., cylindrical specimen of Cu3Pt was prepared by melting and casting 99.99 pct pure Cu and Pt i.n vacuo. Prior to any mechanical working, the material was homogenized in a vacuum for 60 hr at 100O0C, and surface defects were removed by machining to a depth of approximately 116 of an in. The material was then cold-rolled, with an intermediate anneal, into a strip approximately 12 in. wide by 14 in. thick. Straightening and flattening removed another 0.025 in. from the thickness. After a recrystallization treatment at 750°C for 30 min, the specimen was slow-cooled from 55OoC, at the rate of 6°C per hr, down to 150°C to induce superlattice formation. This treatment yielded an ASTM grain size of 7 and a degree of long-range order equal to 0.83 0.06. After obtaining X-ray and Knoop hardness data, the sample was cold-rolled approximately 0.75 pct in one pass through a hand-operated jewelers' mill. X-ray and hardness data were again obtained and the specimen was reduced an additional 5.41 pct in a single pass through the mill. 2) X-Ray Measurements. The specimen was examined in the ordered condition and after the two degrees of cold working previously mentioned using a General Electric XRD-5 unit equipped with a spectrometer and scintillation counter. Using Mo-Ka radiation with a zirconium filter, six orders of the 100 reflection were obtained. It was anticipated that point counting would be necessary for an accurate determination of the low-intensity peaks and tails: however, it was demonstrated that, by using a scanning speed of 0.2 deg per min and the appropriate time constant, the recorded data were sufficiently accurate. Thus, for ease of experimental procedure, all peaks were recorded on chart paper. Specimen position in the holder was considered to be insignificant after making a series of measurements of the same peak area in different positions with respect to the beam. Since peak overlapping did occur at high values of 20, it was necessary to separate the peaks graphically prior to analyzing the data in order to minimize this source of error. The peak tails were also carefully drawn to obtain the best possible data. Fourier coefficients of the line profiles were calculated on an IBM 7072 computer, and graphical meth-ods2j3 were employed in analyzing the results. For this type of calculation, in which the line profile is represented by intensities taken at set intervals, the intervals selected must be sufficiently small to give an accurate representation of the line profile. It was decided that for 20 = 0.02 deg the line profiles were
Citation

APA: J. J. Wert S. G. Cupschalk F. A. Dahlman  (1967)  PART IV - A Study of the Effect of Deformation on Ordered Cu3Pt

MLA: J. J. Wert S. G. Cupschalk F. A. Dahlman PART IV - A Study of the Effect of Deformation on Ordered Cu3Pt. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account