Part III – March 1969 - Papers - Ion Implantation Doping of Silicon for Shallow Junctions

The American Institute of Mining, Metallurgical, and Petroleum Engineers
John M. Fairfield Billy L. Crowder
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1394 KB
Publication Date:
Jan 1, 1970

Abstract

The implantation of B+ , P+, and As&apos; into silicon has been studied with the purpose of making shallow p-n junctions. The influence of such parameters as 1) ion energy, 2) target orientation and temperature, 3) total dose, and 4) annealing schedule was investigated. An energy range of 70 to 300 kev was used for boron and phosphorus implants and up to 500 kev for arsenic. It is found that the experimental projected range agrees well with theory and that shallow junction depths can be made reproducibly. ION implantation has received much attention recently as a technique for doping semiconductors. Specifically, it has the potential of supplementing or replacing the diffusion process as a method for making p-n junctions. In a few specific cases it has been used successfully to make semiconductor junction devices. Potential advantages of ion implantation doping over diffusion techniques are: 1) It affords greater control of shallow junction depths (< 0.2 µ) while maintaining high peak concentrations. This is particularly important for high-speed switching devices, since lower junction capacitances and resistances can be achieved. 2) More precise registration of small planar structures can be realized if proper masking procedures are employed. This advantage is especially useful in the design of high-density integrated circuits. It has been used to advantage in FET fabrication since the edge of the source or drain can be aligned precisely at the edge of the gate electrode.&apos; 3) Ion implanatation permits lower temperatures than diffusion techniques. This factor alleviates the problem of compatibility of diffusivities often encountered when designing multiple-junction structures. Also, the lower temperatures create fewer thermal defects and dislocations, which may account for the high efficiency of some ion-implanted solar cells.2 4) Impurity profiles can be more easily tailored to resemble ideal distributions. Successful exploitation of the potential advantages of ion implantation techniques will depend on increased knowledge and understanding of the subject. The factors likely to be influential in determining impurity distribution profiles in ion-implanted single-crystal targets have been reviewed by J. F. Gibbons.3 In addition to the mass and energy of the implanted ion, the total dose, target orientation, and target temperature are important parameters. The annealing temperature required for removing lattice damage and incorporating the implanted species on an electrically active site is very important. This paper describes an investigation of some of these factors. Implants of boron, phosphorus, and arsenic into silicon have been studied. Energy ranges of 50 to 300 kev were used for boron and phosphorus and up to 500 kev for arsenic. In addition to the implantation energy, the effects of total dose, target temperature, and post implant anneal have been investigated. EXPERIMENTAL PROCEDURE The implantation targets were silicon wafers cut from Czochralski-grown crystals, lapped, and chemically polished. The orientations were (111), (110). and (100) with misorientations of up to 7 deg from the principal axis. For this study, accurate target alignment (i.e., within 0.1 deg) was not available and quoted misorientation values should be regarded as approximate . The implantation equipment consisted of an ion source, a 300-kev linear accelerator tube, an electromagnetic separator, and the associated target supporting and beam focusing assemblies. The ion source was a simple oscillating electron type source,4 which has been described elsewhere.5 The gaseous compounds BF3, PF5, and AsH3 were used as ion sources for B+, P+, As+, and AS+&apos;. Analyzed current levels of up to 20 pamp could be obtained; however, for this investigation target current levels of 1-3 µ amp were usually employed. The analyzed ion beam was collimated through a double slit (1.4 x 0.4 cm) and swept perpendicularly to the long axis of the slit such that an area of about 2 sq cm on each target was covered. Dosages of around 1015 cm-2 were normally employed, but smaller amounts were also used for comparison. A uniform flux density over the bombarded area was assured by the continuous use of profile monitors similar to those described by Wegner and Feigenbaum.6 Post-implant annealing was accomplished in an argon atmosphere in a temperature range of 600" to 950°C. It was not part of the purpose of this investigation to study the annealing kinetics; however, some isochronal and isothermal anneal experiments were conducted to determine the time and temperature necessary to render a reasonably high portion of the implanted ions electrically active (i.e., higher than 50 pct). Post-implant anneal temperatures of around 900° and 600°C were required for boron, and arsenic and phosphorus implants, respectively. Arsenic and phosphorus implants increased in conductivity rather abruptly at the proper anneal temperature of the isochronal curve, but boron increased more gradually over a wider range. Isothermal anneal curves were reasonably flat after 10 min, so an anneal time of 1/2 hr was used for the experimental results described below. The profiling techniques were: 1) neutron activation analysis, 2) differential sheet resistance,7 and 3) junction staining.8 The differential sheet resistance technique is commonly employed in this type of study. Its principal disadvantage is the uncertainty of the ef-
Citation

APA: John M. Fairfield Billy L. Crowder  (1970)  Part III – March 1969 - Papers - Ion Implantation Doping of Silicon for Shallow Junctions

MLA: John M. Fairfield Billy L. Crowder Part III – March 1969 - Papers - Ion Implantation Doping of Silicon for Shallow Junctions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account