Part III – March 1968 - Papers - Formation of Phosphosilicate Glass Films on Silicon Dioxide

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. M. Eldridge P. Balk
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
526 KB
Publication Date:
Jan 1, 1969

Abstract

Phosphosilicate glass films were formed, by reacting gaseous P2O5 with SiO2, over a large range of temperature (800° to 1200°C) and gas phase composition (nearly two orders of magnitude of effective P2Ospressure). The film compositions generally corresponded with the liquidus curve, delineating the maximum solubility of the tridymite Phase of SiO 2 in phosphosilicate liquid solution at the temperature of film formation. It is shown that the P2O5 concentration of the phosphosilicate liquid film tends to decrease by reaction with the underlying SiO 2 layer until the liquidus curve is reached. The validity of the thermodynamic argument used in this explanation is supported by the results of a determination of the composition of borosili-cute films, prepared by reacting gaseous B2O3 with SiO2 at different temperatures. The kinetics of phosphosilicate film formation were described by a model predicated on a steady-state diffusion of P2O5 through the film. UNDERSTANDING of the processes leading to formation of phosphosilicate and borosilicate glasses is of great importance for producing passivating layers on FET devices. Passivating films with optimum characteristics are preferably formed in a separate step, independent of the doping of the semiconductor.' The results of an investigation carried out to gain improved insight into the mechanism of glass formation are presented in this paper. It would be expected that application of the known Pz05-Si02 and B 2 O 3-SiO2 phase diagrams should be useful in extending understanding of the glass-forming processes. However, the question of the propriety of treating thermally grown SiO2 in these binary oxide systems by the methods of equilibrium thermodynamics must be considered when this application is attempted. Although Sah et a1.' and Allen et al. 3 investigated the kinetics of formation of phosphosilicate glass (PSG), they failed to adequately relate their diffusion models to the occurrence of experimentally observed phases in the PSG/SiO 2/Si system. Horuichi and yamaguchi4 investigated the diffusion of boron through an oxide layer and described their results in terms of a model similar to that of Sah and coworkers. More recently, Kooi 5 and Snow and Deal6 reported the compositions of PSG films formed by depositing P2 O 5 onto SiO2. These compositions apparently coincide with those at the liquidus curve delineating the maximum solubility of crystalline SiO2 in phosphosilicate liquid solutions. These authors did not discuss the thermodynamic implications of their results on the structure of thermally grown SiO2 films. The structure of thermally grown Sio2 films and that of vitreous silica are generally thought to be quite similar. Since the solubility of a substance depends on its structure, it is relevant that the solubility of vitreous silica in water7 is highly reproducible, like the solubility of thermally grown SiOz in phosphosilicate liquid. Furthermore, the vitreous silica-water system appears to be in true thermodynamic equilibrium (viz., the same solubility value can be approached from both supersaturated and under-saturated solutions). Sosman7 suggested that a type of two-dimensional lattice may form at the silica/solution interface, resulting in the observed solubility behavior that is characteristic of a crystalline solid. An alternative explanation may be that vitreous silica has a microcrystalline grain structure. Other investigators have suggested that vitreous silica has essentially the structure of B cristobalite,' or is composed of microcrystals of p tridymite or cristobalite, or a mixture of both. Presumably the grain size would be sufficiently large to minimize any appreciable contribution of the grain boundaries to the solubility of the crystalline matrix. The present investigation was carried out to clarify the significance of the boundaries in the Pa,-SiO, and B2O3-SiO2 Systems in determining PSG and BSG (borosilicate) film compositions. Furthermore, the kinetic data for PSG film formation were extended, using a wider range of formation parameters than were previously reported. One model describing the kinetics of film formation will be presented that is compatible with the thermodynamics of the Pa5-Si02 system. EXPERIMENTAL PROCEDURE Glass Film Preparation. SiO2 films (1000 to 8000A thick) were obtained by oxidation of silicon substrates in dry O2 at 1100°C. PSG and BSG films were prepared by exposing these layers to gaseous oxides obtained by reacting high-purity POC13 and BBr3, respectively, with O2. A double-columned saturator was used to ensure complete saturation of the N 2 carrier
Citation

APA: J. M. Eldridge P. Balk  (1969)  Part III – March 1968 - Papers - Formation of Phosphosilicate Glass Films on Silicon Dioxide

MLA: J. M. Eldridge P. Balk Part III – March 1968 - Papers - Formation of Phosphosilicate Glass Films on Silicon Dioxide. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account