Part II - Papers - Evaluation of Silicide Coatings on Columbium and Tantalum and a Means for Improving Their Oxidation Resistance

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1637 KB
- Publication Date:
- Jan 1, 1968
Abstract
qualitative picture has been developed to describe the oxidation behavior of TaSi2-coated tantalum and CbSi2-coated columbium. These systems have a significantly lower inherent oxidation resistance than MoSi2-coated molybdenum does. This stems primarily from the fact that Ta2O5 and Cb2O5 are nearly as stable thermodynamically as SiO2, whereas MoO2 or Moos are not. Further, diffusion of silicon in the Ta- and Cb-Si system is considerably slower than in the Mo-Si system. These ,factors prohibit the mechanism of selective oxidation of- silicon which accounts for the oxidation resistance 01- MoSi2-coated molybdenum. The silicide can be stabilized by adding suitable Modifiers which increase the thermodynamic stability of the silicate formed during oxidation. Modifiers, such as aluminum, can be inroduced into solid solution in the coating. in controlled amounts through proper selection of the source in the pack cementation process of coating fov~rzatiorz. Addition of aluminum to TaSi2, coatings on tantalum was effective in moderately increasing the oxidation resistance. EXTENSIVE experimental work and analysis have established the nature of the oxidation behavior exhibited by MoSi2- and MoSi2 -coated molybdenum-base alloys, and defined the conditions for maximum protection against oxidation of the substrate.'-* The oxidation resistance of MoSi2 in the temperature-pressure range of 1100°C-PO2 > 10-5 atm to 1900°C— PO2 > 10-1 atm is due to the formation at the surface of a continuous film of SiO2 which results from selective oxidation of silicon. Under the prevailing kinetic conditions, this film is stable toward the molybdenum silicide with which it comes in contact. Initially molybdenum oxidizes also, but it forms volatile species. SiO2, however, nucleates and grows as a condensed phase. Once a continuous film of SiO2 has formed, the oxidation rate falls to that observed for the oxidation of pure silicon indicative of diffusion through the oxide film as the rate-controlling mechanism. This oxidation behavior is of course highly dependent upon temperature and oxygen pressure. Bartlett and Gage13 and Bartlett, McCamont, and Gagelb define precisely this dependence in terms of the oxygen partial pressures and silicon diffusivities required to support a stable SiO2 film. At low temperatures (near 500°C—the "pest" region) silicon diffuses too slowly to be selectively oxidized. Hence, molybdenum and silicon oxidize readily in proportion to their stoi- chiometry. At high temperatures and low pressure, SiOz dissociates to form volatile SiO(g), and a protective film cannot be maintained. Application of the MoSiz/Mo system is limited to temperatures below 1900oC, the eutectic between MoSi, and MO5Si3.5 The oxidation behavior of MoSi2-coated molybdenum is essentially the same as that outlined above with the exception that the MoSi2 is not in equilibrium with the molybdenum substrate. At the temperatures under consideration silicon will diffuse rapidly into the molybdenum eventually converting the coating to MosSi3.4 The rate constant for subsequent decomposition of Mo5Si3 into Mo3Si plus silicon, and/or the diffusivity of silicon through Mo3Si then becomes low enough to allow active oxidation of both molybdenum and silicon with subsequent degradation of the specimen. A stable silica film can be formed but at temperatures and/or oxygen partial pressures higher than those required with MoSi2 present as a source of si1icon.l, 4 Because of the similarity between the silicides of molybdenum and those of columbium and tantalum one would expect similar oxidation behavior for coatings in the respective systems. This is not entirely the case, however, as shown by the experimental results reported herein. Regarding tantalum and columbium disilicide coatings on tantalum and columbium substrates, respectively, the oxygen arriving at the surface of the coating partitions itself nearly equally between the metal and the silicon, and a two-phase oxide layer (Me2O5 plus SiO2) is always formed. The diffusion of silicon in the tantalum and columbium silicides is relatively slow, compared to that in the molybdenum silicides, which further enhances this equipartitioning of oxygen. Thickening of the coating during service by inward diffusion of silicon into the substrate is correspondingly slow, and the effective thickness of the coating at the roots of cracks and defects is only slightly changed providing high probability for premature coating failure. Furthermore, the SiO2 glass that is generated is not thermodynamically stable with respect to the coating. The metal silicide tends to reduce the SiO2 liberating either free silicon or SiO. The situation can be improved by suitably modifying the coating such that the stability of the protective glass which is generated during service is increased. Thus, selective oxidation of silicon and the modifying agent will occur, and the silicide coating will not tend to reduce the oxide layer. Modifying agents can be introduced into the coating by the pack cementation process. Using sources containing the modifier at controlled chemical potentials allows control of the coating composition. Partially substituting aluminum for silicon in TaSi2 coatings by forming a Ta(Si,Al)2 solid solution was effective in moderately increasing the oxidation protection.
Citation
APA:
(1968) Part II - Papers - Evaluation of Silicide Coatings on Columbium and Tantalum and a Means for Improving Their Oxidation ResistanceMLA: Part II - Papers - Evaluation of Silicide Coatings on Columbium and Tantalum and a Means for Improving Their Oxidation Resistance. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.