Part II - Papers - Density of Iron Oxide-Silica Melts

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1057 KB
- Publication Date:
- Jan 1, 1968
Abstract
Using the maximum bubble pressure technique, the densities of iron silicates at 1410°C have been measured blowing helium, nitrogen, and argon. By ensuring equilibrium between the melt and the blowing gas with respect to oxygen potential and by minimizing tempcrature cycling of the furnace, iron precipitation in the melt has been prevented. Thus the previously reported effect of blowing-gas composition on the densities of the melts has been eliminated. Consideration of the oxygen densities of the melts gives an indication of the structural changes accompanying composition change. The density-composition relationship of iron oxide-silica melts in contact with solid iron has been the subject of several investigations1-7 and considerable disparities exist among the various results obtained. Of these investigations, all except one5 have employed the maximum bubble pressure method. In the most recently reported of these investigations1 the density-composition relationship obtained blowing nitrogen differed from that obtained blowing argon. The measured densities obtained under nitrogen were greater than those obtained under argon, the difference being a maximum at the pure liquid iron oxide composition and decreasing with increasing silica content. This observation rationalized the disparities existing among the results of the earlier investigations, showing that two lines, one for nitrogen and the other for argon, could be drawn to fit all the earlier results. No explanation for this phenomenon could be offered. Chemical analysis of rapidly quenched samples of melt for dissolved nitrogen, and direct weighing measurements, excluded solution of nitrogen in the melt from being the cause of the increase in density. The range of blowing gases was extended by Ward and Hendersons who measured the density of liquid iron oxide bubbling helium, nitrogen, neon, argon, and krypton. The measured density was found to decrease smoothly with increasing atomic number of the bubbling gas. The work reported here is a continuation of the program initiated by Ward and Sachdev7 to study the densities in multicomponent melts in which the iron oxide-silica system is the solvent. As such it is necessary to explain or eliminate the anomalous densities of iron silicates under different atmospheres, and the present rede termination was carried out towards this end. EXPERIMENTAL The maximum bubble pressure method of density determination was again employed and the experimen- tal apparatus used was essentially the same as that used by Ward and Sachdev.7 A molybdenum-wound resistance furnace heated an ingot iron crucible of internal diameter 1 in. containing a 2-in. depth of melt. The bubbling gas was blown through a 1/4 -in.-diam mild steel tube onto the end of which was welded a 2-in. extension of 1/4 -in.-diam ingot iron rod, drilled out to 5/32 in., and chamfered to an angle of 45 deg. The blowing tube was introduced to the furnace through a sliding seal and its position was controlled by a vertically mounted micrometer screw which allowed the depth of immersion to be determined with an accuracy of ± 0.01 cm. A Pt/Pt-10 pct Rh thermocouple was located below the crucible and temperature control was effected initially by means of an on-off controller and later by a saturable core reactor. The bubble pressure was determined by measurement of a dibutyl phthalate manometer using a cathetometer. PREPARATION OF MATERIALS Iron oxide was produced by melting ferric oxide in an inductively heated iron crucible in air. The liquid was quenched by pouring onto an iron plate. Silica was prepared by dehydrating silicic acid at 650°C for 12 hr. RESULTS Before any measurements of the density of a melt were made, the density of distilled water at room temperature was measured bubbling helium and argon. Both gases gave the density as 1.00 ± 0.01 g per cu cm which showed that the density of the manometric fluid (dibutyl phthalate) was not affected by contact with the blowing gas. With the furnace controlled by an on-off temperature controller an attempt was made to measure the density of pure liquid iron oxide by bubbling argon. The furnace atmosphere gas and bubbling gas were dried over magnesium perchlorate and deoxidized over copper turnings at 600°C. It was found that the pressure required to blow a bubble at a given depth increased slowly with time, and thus it was impossible to obtain a unique value for the density of the melt. Inspection of the blowing tube after removal from the furnace showed that rings of dendritic iron had precipitated from the melt onto the immersed part of the tube. This is shown in Fig. l(a) where the various "steps" correspond to different depths of immersion. The precipitation of iron was considered to be due to one or both of two possible causes: i) The composition of the liquid iron oxide is that of the liquidus at the temperature under consideration and can be expressed by the equilibrium
Citation
APA:
(1968) Part II - Papers - Density of Iron Oxide-Silica MeltsMLA: Part II - Papers - Density of Iron Oxide-Silica Melts. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.